Математический анализ Примеры

Преобразовать к интервальному виду (x^2(x-10)(x+1))/((x-5)(x+8))>=0
Этап 1
Найдем все значения, где выражение переменяет знак с отрицательного на положительный. Для этого приравняем каждый множитель к и решим.
Этап 2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 3
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.1
Перепишем в виде .
Этап 3.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 3.3
Плюс или минус равно .
Этап 4
Добавим к обеим частям уравнения.
Этап 5
Вычтем из обеих частей уравнения.
Этап 6
Добавим к обеим частям уравнения.
Этап 7
Вычтем из обеих частей уравнения.
Этап 8
Решим для каждого множителя, чтобы найти значения, при которых выражение абсолютного значения переходит от отрицательного значения к положительному.
Этап 9
Объединим решения.
Этап 10
Найдем область определения .
Нажмите для увеличения количества этапов...
Этап 10.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 10.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 10.2.1
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 10.2.2
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 10.2.2.1
Приравняем к .
Этап 10.2.2.2
Добавим к обеим частям уравнения.
Этап 10.2.3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 10.2.3.1
Приравняем к .
Этап 10.2.3.2
Вычтем из обеих частей уравнения.
Этап 10.2.4
Окончательным решением являются все значения, при которых верно.
Этап 10.3
Область определения ― это все значения , при которых выражение определено.
Этап 11
Используем каждый корень для создания контрольных интервалов.
Этап 12
Выберем тестовое значение из каждого интервала и подставим это значение в исходное неравенство для определения интервалов, удовлетворяющих неравенству.
Нажмите для увеличения количества этапов...
Этап 12.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 12.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 12.1.2
Заменим на в исходном неравенстве.
Этап 12.1.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 12.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 12.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 12.2.2
Заменим на в исходном неравенстве.
Этап 12.2.3
Левая часть меньше правой части , значит, данное утверждение ложно.
False
False
Этап 12.3
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 12.3.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 12.3.2
Заменим на в исходном неравенстве.
Этап 12.3.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 12.4
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 12.4.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 12.4.2
Заменим на в исходном неравенстве.
Этап 12.4.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 12.5
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 12.5.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 12.5.2
Заменим на в исходном неравенстве.
Этап 12.5.3
Левая часть меньше правой части , значит, данное утверждение ложно.
False
False
Этап 12.6
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 12.6.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 12.6.2
Заменим на в исходном неравенстве.
Этап 12.6.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 12.7
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Истина
Ложь
Истина
Истина
Ложь
Истина
Истина
Ложь
Истина
Истина
Ложь
Истина
Этап 13
Решение состоит из всех истинных интервалов.
или или или
Этап 14
Объединим интервалы.
Этап 15
Преобразуем неравенство в интервальное представление.
Этап 16