Математический анализ Примеры

Trovare la Retta Tangente in x=1 f(x)=x/((4x-3)^8) , x=1
,
Этап 1
Find the corresponding -value to .
Нажмите для увеличения количества этапов...
Этап 1.1
Подставим вместо .
Этап 1.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Избавимся от скобок.
Этап 1.2.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 1.2.2.1.1
Умножим на .
Этап 1.2.2.1.2
Вычтем из .
Этап 1.2.2.1.3
Единица в любой степени равна единице.
Этап 1.2.2.2
Разделим на .
Этап 2
Найдем первую производную и вычислим ее значения в точках и , чтобы найти угловой коэффициент касательной.
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 2.2
Продифференцируем, используя правило степени.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Применим правило степени и перемножим показатели, .
Этап 2.2.1.2
Умножим на .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 2.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Чтобы применить цепное правило, зададим как .
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Заменим все вхождения на .
Этап 2.4
Упростим с помощью разложения.
Нажмите для увеличения количества этапов...
Этап 2.4.1
Умножим на .
Этап 2.4.2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.4.2.1
Вынесем множитель из .
Этап 2.4.2.2
Вынесем множитель из .
Этап 2.4.2.3
Вынесем множитель из .
Этап 2.5
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 2.5.1
Вынесем множитель из .
Этап 2.5.2
Сократим общий множитель.
Этап 2.5.3
Перепишем это выражение.
Этап 2.6
По правилу суммы производная по имеет вид .
Этап 2.7
Поскольку является константой относительно , производная по равна .
Этап 2.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.9
Умножим на .
Этап 2.10
Поскольку является константой относительно , производная относительно равна .
Этап 2.11
Упростим путем добавления членов.
Нажмите для увеличения количества этапов...
Этап 2.11.1
Добавим и .
Этап 2.11.2
Умножим на .
Этап 2.11.3
Вычтем из .
Этап 2.12
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.12.1
Вынесем множитель из .
Этап 2.12.2
Перепишем в виде .
Этап 2.12.3
Вынесем множитель из .
Этап 2.12.4
Перепишем в виде .
Этап 2.12.5
Вынесем знак минуса перед дробью.
Этап 2.13
Найдем производную в .
Этап 2.14
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.14.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.14.1.1
Умножим на .
Этап 2.14.1.2
Добавим и .
Этап 2.14.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 2.14.2.1
Умножим на .
Этап 2.14.2.2
Вычтем из .
Этап 2.14.2.3
Единица в любой степени равна единице.
Этап 2.14.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.14.3.1
Разделим на .
Этап 2.14.3.2
Умножим на .
Этап 3
Подставим угловой коэффициент и координаты точки в уравнение прямой с угловым коэффициентом и заданной точкой и решим его относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Используем угловой коэффициент и координаты заданной точки вместо и в уравнении прямой с угловым коэффициентом и заданной точкой , выведенном из уравнения с угловым коэффициентом .
Этап 3.2
Упростим уравнение и оставим его в виде уравнения прямой с угловым коэффициентом и заданной точкой.
Этап 3.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Перепишем.
Этап 3.3.1.2
Упростим путем добавления нулей.
Этап 3.3.1.3
Применим свойство дистрибутивности.
Этап 3.3.1.4
Умножим на .
Этап 3.3.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Добавим к обеим частям уравнения.
Этап 3.3.2.2
Добавим и .
Этап 4