Математический анализ Примеры

Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.2
Производная по равна .
Этап 1.2
Первая производная по равна .
Этап 2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Приравняем к .
Этап 2.3.2
Множество значений секанса: и . Поскольку не попадает в этот диапазон, решение отсутствует.
Нет решения
Нет решения
Этап 2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.1
Приравняем к .
Этап 2.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.2.1
Возьмем обратный тангенс обеих частей уравнения, чтобы извлечь из тангенса.
Этап 2.4.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.4.2.2.1
Точное значение : .
Этап 2.4.2.3
Функция тангенса положительна в первом и третьем квадрантах. Для нахождения второго решения прибавим угол приведения из и найдем решение в четвертом квадранте.
Этап 2.4.2.4
Добавим и .
Этап 2.4.2.5
Найдем период .
Нажмите для увеличения количества этапов...
Этап 2.4.2.5.1
Период функции можно вычислить по формуле .
Этап 2.4.2.5.2
Заменим на в формуле периода.
Этап 2.4.2.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 2.4.2.5.4
Разделим на .
Этап 2.4.2.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 2.5
Окончательным решением являются все значения, при которых верно.
, для любого целого
Этап 2.6
Объединим ответы.
, для любого целого
, для любого целого
Этап 3
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 3.1
Зададим аргумент в равным , чтобы узнать, где данное выражение не определено.
, для любого целого
Этап 3.2
Уравнение не определено, если знаменатель равен , аргумент под знаком квадратного корня меньше или аргумент под знаком логарифма меньше или равен .
, для любого целого числа
, для любого целого числа
Этап 4
Вычислим для каждого значения , для которого производная равна или не определена.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
Точное значение : .
Этап 4.1.2.2
Умножим на .
Этап 4.2
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Подставим вместо .
Этап 4.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как секанс отрицательный во втором квадранте.
Этап 4.2.2.2
Точное значение : .
Этап 4.2.2.3
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.2.2.3.1
Умножим на .
Этап 4.2.2.3.2
Умножим на .
Этап 4.3
Перечислим все точки.
, для любого целого
, для любого целого
Этап 5