Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Этап 2.1
Найдем первую производную.
Этап 2.1.1
По правилу суммы производная по имеет вид .
Этап 2.1.2
Производная по равна .
Этап 2.1.3
Найдем значение .
Этап 2.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.3.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.1.3.3
Производная по равна .
Этап 2.1.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.3.5
Умножим на .
Этап 2.1.4
Упростим.
Этап 2.1.4.1
Применим свойство дистрибутивности.
Этап 2.1.4.2
Объединим термины.
Этап 2.1.4.2.1
Умножим на .
Этап 2.1.4.2.2
Умножим на .
Этап 2.1.4.2.3
Вычтем из .
Этап 2.1.4.2.4
Добавим и .
Этап 2.2
Первая производная по равна .
Этап 3
Этап 3.1
Пусть первая производная равна .
Этап 3.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3.3
Приравняем к .
Этап 3.4
Приравняем к , затем решим относительно .
Этап 3.4.1
Приравняем к .
Этап 3.4.2
Решим относительно .
Этап 3.4.2.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 3.4.2.2
Упростим правую часть.
Этап 3.4.2.2.1
Точное значение : .
Этап 3.4.2.3
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 3.4.2.4
Вычтем из .
Этап 3.4.2.5
Найдем период .
Этап 3.4.2.5.1
Период функции можно вычислить по формуле .
Этап 3.4.2.5.2
Заменим на в формуле периода.
Этап 3.4.2.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 3.4.2.5.4
Разделим на .
Этап 3.4.2.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 3.5
Окончательным решением являются все значения, при которых верно.
, для любого целого
Этап 3.6
Объединим ответы.
Этап 3.6.1
Объединим и в .
, для любого целого
Этап 3.6.2
Объединим ответы.
, для любого целого
, для любого целого
, для любого целого
Этап 4
Значения, при которых производная равна : .
Этап 5
Найдя точку, в которой производная равна или не определена, проверим возрастание и убывание в интервале .
Этап 6
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Этап 6.2.1
Применим свойство дистрибутивности.
Этап 6.2.2
Перепишем в виде .
Этап 6.2.3
Окончательный ответ: .
Этап 6.3
При производная имеет вид . Поскольку это отрицательная величина, функция убывает в диапазоне .
Убывание на , так как
Убывание на , так как
Этап 7
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Этап 7.2.1
Применим свойство дистрибутивности.
Этап 7.2.2
Умножим на .
Этап 7.2.3
Окончательный ответ: .
Этап 7.3
При производная имеет вид . Поскольку это положительная величина, функция возрастает в диапазоне .
Возрастание в области , так как
Возрастание в области , так как
Этап 8
Перечислим интервалы, на которых функция возрастает и убывает.
Возрастание в области:
Убывание на:
Этап 9