Математический анализ Примеры

Найти точки перегиба f(x)=x^2(4-2x)^2
Этап 1
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Перепишем в виде .
Этап 1.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Применим свойство дистрибутивности.
Этап 1.1.2.2
Применим свойство дистрибутивности.
Этап 1.1.2.3
Применим свойство дистрибутивности.
Этап 1.1.3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1.1
Умножим на .
Этап 1.1.3.1.2
Умножим на .
Этап 1.1.3.1.3
Умножим на .
Этап 1.1.3.1.4
Перепишем, используя свойство коммутативности умножения.
Этап 1.1.3.1.5
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1.5.1
Перенесем .
Этап 1.1.3.1.5.2
Умножим на .
Этап 1.1.3.1.6
Умножим на .
Этап 1.1.3.2
Вычтем из .
Этап 1.1.4
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.1.5
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.5.1
По правилу суммы производная по имеет вид .
Этап 1.1.5.2
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.5.3
Добавим и .
Этап 1.1.5.4
Поскольку является константой относительно , производная по равна .
Этап 1.1.5.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.5.6
Умножим на .
Этап 1.1.5.7
Поскольку является константой относительно , производная по равна .
Этап 1.1.5.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.5.9
Умножим на .
Этап 1.1.5.10
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.5.11
Перенесем влево от .
Этап 1.1.6
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.6.1
Применим свойство дистрибутивности.
Этап 1.1.6.2
Применим свойство дистрибутивности.
Этап 1.1.6.3
Применим свойство дистрибутивности.
Этап 1.1.6.4
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 1.1.6.4.1
Перенесем влево от .
Этап 1.1.6.4.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.1.6.4.2.1
Перенесем .
Этап 1.1.6.4.2.2
Умножим на .
Нажмите для увеличения количества этапов...
Этап 1.1.6.4.2.2.1
Возведем в степень .
Этап 1.1.6.4.2.2.2
Применим правило степени для объединения показателей.
Этап 1.1.6.4.2.3
Добавим и .
Этап 1.1.6.4.3
Перенесем влево от .
Этап 1.1.6.4.4
Умножим на .
Этап 1.1.6.4.5
Умножим на .
Этап 1.1.6.4.6
Возведем в степень .
Этап 1.1.6.4.7
Возведем в степень .
Этап 1.1.6.4.8
Применим правило степени для объединения показателей.
Этап 1.1.6.4.9
Добавим и .
Этап 1.1.6.4.10
Умножим на .
Этап 1.1.6.4.11
Возведем в степень .
Этап 1.1.6.4.12
Применим правило степени для объединения показателей.
Этап 1.1.6.4.13
Добавим и .
Этап 1.1.6.4.14
Вычтем из .
Этап 1.1.6.4.15
Добавим и .
Этап 1.1.6.5
Изменим порядок членов.
Этап 1.2
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 1.2.1
По правилу суммы производная по имеет вид .
Этап 1.2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.2.3
Умножим на .
Этап 1.2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.2.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3.3
Умножим на .
Этап 1.2.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.4.3
Умножим на .
Этап 1.3
Вторая производная по равна .
Этап 2
Приравняем вторую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть вторая производная равна .
Этап 2.2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Вынесем множитель из .
Этап 2.2.2
Вынесем множитель из .
Этап 2.2.3
Вынесем множитель из .
Этап 2.2.4
Вынесем множитель из .
Этап 2.2.5
Вынесем множитель из .
Этап 2.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Разделим каждый член на .
Этап 2.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1.1
Сократим общий множитель.
Этап 2.3.2.1.2
Разделим на .
Этап 2.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Разделим на .
Этап 2.4
Используем формулу для нахождения корней квадратного уравнения.
Этап 2.5
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 2.6
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.6.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.6.1.1
Возведем в степень .
Этап 2.6.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.6.1.2.1
Умножим на .
Этап 2.6.1.2.2
Умножим на .
Этап 2.6.1.3
Вычтем из .
Этап 2.6.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 2.6.1.4.1
Вынесем множитель из .
Этап 2.6.1.4.2
Перепишем в виде .
Этап 2.6.1.5
Вынесем члены из-под знака корня.
Этап 2.6.2
Умножим на .
Этап 2.6.3
Упростим .
Этап 2.7
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 2.7.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.7.1.1
Возведем в степень .
Этап 2.7.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.7.1.2.1
Умножим на .
Этап 2.7.1.2.2
Умножим на .
Этап 2.7.1.3
Вычтем из .
Этап 2.7.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 2.7.1.4.1
Вынесем множитель из .
Этап 2.7.1.4.2
Перепишем в виде .
Этап 2.7.1.5
Вынесем члены из-под знака корня.
Этап 2.7.2
Умножим на .
Этап 2.7.3
Упростим .
Этап 2.7.4
Заменим на .
Этап 2.8
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 2.8.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.8.1.1
Возведем в степень .
Этап 2.8.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.8.1.2.1
Умножим на .
Этап 2.8.1.2.2
Умножим на .
Этап 2.8.1.3
Вычтем из .
Этап 2.8.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 2.8.1.4.1
Вынесем множитель из .
Этап 2.8.1.4.2
Перепишем в виде .
Этап 2.8.1.5
Вынесем члены из-под знака корня.
Этап 2.8.2
Умножим на .
Этап 2.8.3
Упростим .
Этап 2.8.4
Заменим на .
Этап 2.9
Окончательный ответ является комбинацией обоих решений.
Этап 3
Найдем точки, в которых вторая производная равна .
Нажмите для увеличения количества этапов...
Этап 3.1
Подставим в , чтобы найти значение .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Заменим в этом выражении переменную на .
Этап 3.1.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 3.1.2.1
Возведем в степень .
Этап 3.1.2.2
Умножим на .
Этап 3.1.2.3
Вычтем из .
Этап 3.1.2.4
Возведем в степень .
Этап 3.1.2.5
Умножим на .
Этап 3.1.2.6
Окончательный ответ: .
Этап 3.2
Подставляя в , найдем точку . Эта точка может быть точкой перегиба.
Этап 3.3
Подставим в , чтобы найти значение .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Заменим в этом выражении переменную на .
Этап 3.3.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Возведем в степень .
Этап 3.3.2.2
Умножим на .
Этап 3.3.2.3
Вычтем из .
Этап 3.3.2.4
Возведем в степень .
Этап 3.3.2.5
Умножим на .
Этап 3.3.2.6
Окончательный ответ: .
Этап 3.4
Подставляя в , найдем точку . Эта точка может быть точкой перегиба.
Этап 3.5
Определим точки, которые могут быть точками перегиба.
Этап 4
Разобьем на интервалы вокруг точек, которые могут быть точками перегиба.
Этап 5
Подставим значение из интервала во вторую производную, чтобы определить, возрастает она или убывает.
Нажмите для увеличения количества этапов...
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.2.1.1
Возведем в степень .
Этап 5.2.1.2
Умножим на .
Этап 5.2.1.3
Умножим на .
Этап 5.2.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Вычтем из .
Этап 5.2.2.2
Добавим и .
Этап 5.2.3
Окончательный ответ: .
Этап 5.3
При вторая производная имеет вид . Поскольку это положительная величина, вторая производная возрастает на интервале .
Возрастание в области , так как
Возрастание в области , так как
Этап 6
Подставим значение из интервала во вторую производную, чтобы определить, возрастает она или убывает.
Нажмите для увеличения количества этапов...
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.2.1.1
Возведем в степень .
Этап 6.2.1.2
Умножим на .
Этап 6.2.1.3
Умножим на .
Этап 6.2.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Вычтем из .
Этап 6.2.2.2
Добавим и .
Этап 6.2.3
Окончательный ответ: .
Этап 6.3
При вторая производная имеет вид . Поскольку это отрицательная величина, вторая производная уменьшается на интервале .
Убывание на , так как
Убывание на , так как
Этап 7
Подставим значение из интервала во вторую производную, чтобы определить, возрастает она или убывает.
Нажмите для увеличения количества этапов...
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 7.2.1.1
Возведем в степень .
Этап 7.2.1.2
Умножим на .
Этап 7.2.1.3
Умножим на .
Этап 7.2.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 7.2.2.1
Вычтем из .
Этап 7.2.2.2
Добавим и .
Этап 7.2.3
Окончательный ответ: .
Этап 7.3
При вторая производная имеет вид . Поскольку это положительная величина, вторая производная возрастает на интервале .
Возрастание в области , так как
Возрастание в области , так как
Этап 8
Точка перегиба — это точка на кривой, в которой вогнутость меняет знак с плюса на минус или с минуса на плюс. Точки перегиба в данном случае: .
Этап 9