Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 3
Составим интеграл, чтобы решить его.
Этап 4
Разделим данный интеграл на несколько интегралов.
Этап 5
Этап 5.1
Пусть . Найдем .
Этап 5.1.1
Дифференцируем .
Этап 5.1.2
Поскольку является константой относительно , производная по равна .
Этап 5.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.4
Умножим на .
Этап 5.2
Переформулируем задачу с помощью и .
Этап 6
Объединим и .
Этап 7
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 8
Интеграл по имеет вид .
Этап 9
Этап 9.1
Пусть . Найдем .
Этап 9.1.1
Дифференцируем .
Этап 9.1.2
Поскольку является константой относительно , производная по равна .
Этап 9.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 9.1.4
Умножим на .
Этап 9.2
Переформулируем задачу с помощью и .
Этап 10
Объединим и .
Этап 11
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 12
Интеграл по имеет вид .
Этап 13
Упростим.
Этап 14
Этап 14.1
Заменим все вхождения на .
Этап 14.2
Заменим все вхождения на .
Этап 15
Изменим порядок членов.
Этап 16
Ответ ― первообразная функции .