Математический анализ Примеры

Найти первообразную (x^2)/( квадратный корень из 16-x^2)
Этап 1
Запишем в виде функции.
Этап 2
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 3
Составим интеграл, чтобы решить его.
Этап 4
Пусть , где . Тогда . Заметим, что поскольку , выражение положительно.
Этап 5
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 5.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.1.1.1
Применим правило умножения к .
Этап 5.1.1.2
Возведем в степень .
Этап 5.1.1.3
Умножим на .
Этап 5.1.2
Вынесем множитель из .
Этап 5.1.3
Вынесем множитель из .
Этап 5.1.4
Вынесем множитель из .
Этап 5.1.5
Применим формулу Пифагора.
Этап 5.1.6
Перепишем в виде .
Этап 5.1.7
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 5.2
Сократим выражение, путем отбрасывания общих множителей.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.2.1.1
Сократим общий множитель.
Этап 5.2.1.2
Перепишем это выражение.
Этап 5.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Вынесем множитель из .
Этап 5.2.2.2
Применим правило умножения к .
Этап 5.2.2.3
Возведем в степень .
Этап 6
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
Используем формулу половинного угла для записи в виде .
Этап 8
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 9
Упростим.
Нажмите для увеличения количества этапов...
Этап 9.1
Объединим и .
Этап 9.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 9.2.1
Вынесем множитель из .
Этап 9.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 9.2.2.1
Вынесем множитель из .
Этап 9.2.2.2
Сократим общий множитель.
Этап 9.2.2.3
Перепишем это выражение.
Этап 9.2.2.4
Разделим на .
Этап 10
Разделим данный интеграл на несколько интегралов.
Этап 11
Применим правило дифференцирования постоянных функций.
Этап 12
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 13
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 13.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 13.1.1
Дифференцируем .
Этап 13.1.2
Поскольку является константой относительно , производная по равна .
Этап 13.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 13.1.4
Умножим на .
Этап 13.2
Переформулируем задачу с помощью и .
Этап 14
Объединим и .
Этап 15
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 16
Интеграл по имеет вид .
Этап 17
Упростим.
Этап 18
Выполним обратную подстановку для каждой подставленной переменной интегрирования.
Нажмите для увеличения количества этапов...
Этап 18.1
Заменим все вхождения на .
Этап 18.2
Заменим все вхождения на .
Этап 18.3
Заменим все вхождения на .
Этап 19
Упростим.
Нажмите для увеличения количества этапов...
Этап 19.1
Объединим и .
Этап 19.2
Применим свойство дистрибутивности.
Этап 19.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 19.3.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 19.3.2
Вынесем множитель из .
Этап 19.3.3
Сократим общий множитель.
Этап 19.3.4
Перепишем это выражение.
Этап 19.4
Умножим на .
Этап 20
Изменим порядок членов.
Этап 21
Ответ ― первообразная функции .