Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 3
Составим интеграл, чтобы решить его.
Этап 4
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
Этап 5.1
Пусть . Найдем .
Этап 5.1.1
Дифференцируем .
Этап 5.1.2
Продифференцируем.
Этап 5.1.2.1
По правилу суммы производная по имеет вид .
Этап 5.1.2.2
Поскольку является константой относительно , производная относительно равна .
Этап 5.1.3
Производная по равна .
Этап 5.1.4
Вычтем из .
Этап 5.2
Переформулируем задачу с помощью и .
Этап 6
Вынесем знак минуса перед дробью.
Этап 7
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 8
Умножим на .
Этап 9
Интеграл по имеет вид .
Этап 10
Упростим.
Этап 11
Заменим все вхождения на .
Этап 12
Ответ ― первообразная функции .