Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 3
Составим интеграл, чтобы решить его.
Этап 4
Этап 4.1
Разложим дробь и умножим на общий знаменатель.
Этап 4.1.1
Вынесем множитель из .
Этап 4.1.1.1
Вынесем множитель из .
Этап 4.1.1.2
Вынесем множитель из .
Этап 4.1.1.3
Вынесем множитель из .
Этап 4.1.1.4
Умножим на .
Этап 4.1.2
Для каждого множителя в знаменателе создадим новую дробь, используя множитель в качестве знаменателя, а неизвестное значение — в качестве числителя. Поскольку множитель в знаменателе линейный, поместим одну переменную на его место .
Этап 4.1.3
Умножим каждую дробь в уравнении на знаменатель исходного выражения. В этом случае знаменатель равен .
Этап 4.1.4
Сократим общий множитель .
Этап 4.1.4.1
Сократим общий множитель.
Этап 4.1.4.2
Перепишем это выражение.
Этап 4.1.5
Сократим общий множитель .
Этап 4.1.5.1
Сократим общий множитель.
Этап 4.1.5.2
Перепишем это выражение.
Этап 4.1.6
Упростим каждый член.
Этап 4.1.6.1
Сократим общий множитель .
Этап 4.1.6.1.1
Сократим общий множитель.
Этап 4.1.6.1.2
Разделим на .
Этап 4.1.6.2
Применим свойство дистрибутивности.
Этап 4.1.6.3
Перенесем влево от .
Этап 4.1.6.4
Перепишем, используя свойство коммутативности умножения.
Этап 4.1.6.5
Сократим общий множитель .
Этап 4.1.6.5.1
Сократим общий множитель.
Этап 4.1.6.5.2
Разделим на .
Этап 4.1.7
Упростим выражение.
Этап 4.1.7.1
Перенесем .
Этап 4.1.7.2
Изменим порядок и .
Этап 4.1.7.3
Перенесем .
Этап 4.2
Составим уравнения для переменных элементарной дроби и используем их для создания системы уравнений.
Этап 4.2.1
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты из каждой части уравнения. Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 4.2.2
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты членов, не содержащих . Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 4.2.3
Составим систему уравнений, чтобы найти коэффициенты элементарных дробей.
Этап 4.3
Решим систему уравнений.
Этап 4.3.1
Решим относительно в .
Этап 4.3.1.1
Перепишем уравнение в виде .
Этап 4.3.1.2
Разделим каждый член на и упростим.
Этап 4.3.1.2.1
Разделим каждый член на .
Этап 4.3.1.2.2
Упростим левую часть.
Этап 4.3.1.2.2.1
Сократим общий множитель .
Этап 4.3.1.2.2.1.1
Сократим общий множитель.
Этап 4.3.1.2.2.1.2
Разделим на .
Этап 4.3.2
Заменим все вхождения на во всех уравнениях.
Этап 4.3.2.1
Заменим все вхождения в на .
Этап 4.3.2.2
Упростим правую часть.
Этап 4.3.2.2.1
Перепишем в виде .
Этап 4.3.3
Решим относительно в .
Этап 4.3.3.1
Перепишем уравнение в виде .
Этап 4.3.3.2
Добавим к обеим частям уравнения.
Этап 4.3.4
Решим систему уравнений.
Этап 4.3.5
Перечислим все решения.
Этап 4.4
Заменим каждый коэффициент элементарной дроби в значениями, найденными для и .
Этап 4.5
Упростим.
Этап 4.5.1
Умножим числитель на величину, обратную знаменателю.
Этап 4.5.2
Умножим на .
Этап 4.5.3
Умножим числитель на величину, обратную знаменателю.
Этап 4.5.4
Умножим на .
Этап 5
Разделим данный интеграл на несколько интегралов.
Этап 6
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
Интеграл по имеет вид .
Этап 8
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 9
Этап 9.1
Пусть . Найдем .
Этап 9.1.1
Перепишем.
Этап 9.1.2
Разделим на .
Этап 9.2
Переформулируем задачу с помощью и .
Этап 10
Вынесем знак минуса перед дробью.
Этап 11
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 12
Интеграл по имеет вид .
Этап 13
Этап 13.1
Упростим.
Этап 13.2
Объединим и .
Этап 14
Заменим все вхождения на .
Этап 15
Изменим порядок членов.
Этап 16
Ответ ― первообразная функции .