Математический анализ Примеры

Вычислить при помощи правила Лопиталя предел (9-e^x)/(9+4e^x), если x стремится к infinity
Этап 1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 1.2.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.2.1.2
Найдем предел , который является константой по мере приближения к .
Этап 1.2.2
Поскольку показатель степени стремится к , величина стремится к .
Этап 1.2.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 1.2.3.1
Произведение ненулевой константы на бесконечность равно бесконечности.
Этап 1.2.3.2
Разность или сумма бесконечности и числа равна бесконечности.
Этап 1.3
Найдем предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 1.3.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.3.1.2
Найдем предел , который является константой по мере приближения к .
Этап 1.3.2
Поскольку функция стремится к , произведение положительной константы и функции стремится к .
Нажмите для увеличения количества этапов...
Этап 1.3.2.1
Рассмотрим предел с исключенной константой, кратной .
Этап 1.3.2.2
Поскольку показатель степени стремится к , величина стремится к .
Этап 1.3.3
Разность или сумма бесконечности и числа равна бесконечности.
Этап 1.3.4
Деление бесконечности на бесконечность не определено.
Неопределенные
Этап 1.4
Деление бесконечности на бесконечность не определено.
Неопределенные
Этап 2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем числитель и знаменатель.
Этап 3.2
По правилу суммы производная по имеет вид .
Этап 3.3
Поскольку является константой относительно , производная относительно равна .
Этап 3.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.4.1
Поскольку является константой относительно , производная по равна .
Этап 3.4.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.5
Вычтем из .
Этап 3.6
По правилу суммы производная по имеет вид .
Этап 3.7
Поскольку является константой относительно , производная относительно равна .
Этап 3.8
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.8.1
Поскольку является константой относительно , производная по равна .
Этап 3.8.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.9
Добавим и .
Этап 4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.1
Сократим общий множитель.
Этап 4.2
Перепишем это выражение.
Этап 5
Найдем предел , который является константой по мере приближения к .
Этап 6
Вынесем знак минуса перед дробью.