Математический анализ Примеры

Вычислить при помощи правила Лопиталя предел (arcsin(4x))/x, если x стремится к 0
Этап 1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.2
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Найдем предел , подставив значение для .
Этап 1.2.2
Умножим на .
Этап 1.2.3
Точное значение : .
Этап 1.3
Найдем предел , подставив значение для .
Этап 1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем числитель и знаменатель.
Этап 3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Чтобы применить цепное правило, зададим как .
Этап 3.2.2
Производная по равна .
Этап 3.2.3
Заменим все вхождения на .
Этап 3.3
Вынесем множитель из .
Этап 3.4
Применим правило умножения к .
Этап 3.5
Возведем в степень .
Этап 3.6
Умножим на .
Этап 3.7
Поскольку является константой относительно , производная по равна .
Этап 3.8
Объединим и .
Этап 3.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.10
Умножим на .
Этап 3.11
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4
Умножим числитель на величину, обратную знаменателю.
Этап 5
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 5.1
Умножим на .
Этап 5.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 5.3
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 5.4
Найдем предел , который является константой по мере приближения к .
Этап 5.5
Внесем предел под знак радикала.
Этап 5.6
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 5.7
Найдем предел , который является константой по мере приближения к .
Этап 5.8
Вынесем член из-под знака предела, так как он не зависит от .
Этап 5.9
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 6
Найдем предел , подставив значение для .
Этап 7
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 7.1
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 7.1.1
Возведение в любую положительную степень дает .
Этап 7.1.2
Умножим на .
Этап 7.1.3
Добавим и .
Этап 7.1.4
Любой корень из равен .
Этап 7.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.2.1
Сократим общий множитель.
Этап 7.2.2
Перепишем это выражение.
Этап 7.3
Умножим на .