Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем первую производную.
Этап 1.1.1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 1.1.2
Продифференцируем.
Этап 1.1.2.1
По правилу суммы производная по имеет вид .
Этап 1.1.2.2
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.4
Умножим на .
Этап 1.1.2.5
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.2.6
Добавим и .
Этап 1.1.3
Возведем в степень .
Этап 1.1.4
Возведем в степень .
Этап 1.1.5
Применим правило степени для объединения показателей.
Этап 1.1.6
Добавим и .
Этап 1.1.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.8
Умножим на .
Этап 1.1.9
Упростим.
Этап 1.1.9.1
Применим свойство дистрибутивности.
Этап 1.1.9.2
Упростим числитель.
Этап 1.1.9.2.1
Упростим каждый член.
Этап 1.1.9.2.1.1
Умножим на .
Этап 1.1.9.2.1.2
Умножим на .
Этап 1.1.9.2.2
Вычтем из .
Этап 1.2
Первая производная по равна .
Этап 2
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Приравняем числитель к нулю.
Этап 2.3
Решим уравнение относительно .
Этап 2.3.1
Вычтем из обеих частей уравнения.
Этап 2.3.2
Разделим каждый член на и упростим.
Этап 2.3.2.1
Разделим каждый член на .
Этап 2.3.2.2
Упростим левую часть.
Этап 2.3.2.2.1
Сократим общий множитель .
Этап 2.3.2.2.1.1
Сократим общий множитель.
Этап 2.3.2.2.1.2
Разделим на .
Этап 2.3.2.3
Упростим правую часть.
Этап 2.3.2.3.1
Вынесем знак минуса перед дробью.
Этап 2.3.3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 2.3.4
Упростим .
Этап 2.3.4.1
Перепишем в виде .
Этап 2.3.4.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.3.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2.3.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 2.3.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 2.3.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 3
Этап 3.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 3.2
Решим относительно .
Этап 3.2.1
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 3.2.2
Упростим .
Этап 3.2.2.1
Перепишем в виде .
Этап 3.2.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 3.2.2.3
Плюс или минус равно .
Этап 4
Этап 4.1
Найдем значение в .
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Выражение содержит деление на . Выражение не определено.
Неопределенные
Неопределенные
Неопределенные
Этап 5
В области определения исходной задачи нет значений , при которых производная равна или не определена.
Критические точки не найдены