Математический анализ Примеры

Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 1.2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.2.1
По правилу суммы производная по имеет вид .
Этап 1.2.2
Поскольку является константой относительно , производная относительно равна .
Этап 1.2.3
Добавим и .
Этап 1.2.4
Поскольку является константой относительно , производная по равна .
Этап 1.2.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.6
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.2.6.1
Умножим на .
Этап 1.2.6.2
Перенесем влево от .
Этап 1.2.7
По правилу суммы производная по имеет вид .
Этап 1.2.8
Поскольку является константой относительно , производная относительно равна .
Этап 1.2.9
Добавим и .
Этап 1.2.10
Поскольку является константой относительно , производная по равна .
Этап 1.2.11
Умножим на .
Этап 1.2.12
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.13
Умножим на .
Этап 1.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Применим свойство дистрибутивности.
Этап 1.3.2
Применим свойство дистрибутивности.
Этап 1.3.3
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.3.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.3.3.1.1
Умножим на .
Этап 1.3.3.1.2
Умножим на .
Этап 1.3.3.1.3
Умножим на .
Этап 1.3.3.1.4
Умножим на .
Этап 1.3.3.2
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 1.3.3.2.1
Вычтем из .
Этап 1.3.3.2.2
Добавим и .
Этап 1.3.3.3
Добавим и .
Этап 1.3.4
Вынесем знак минуса перед дробью.
Этап 1.3.5
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 1.3.5.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.3.5.1.1
Вынесем множитель из .
Этап 1.3.5.1.2
Вынесем множитель из .
Этап 1.3.5.1.3
Вынесем множитель из .
Этап 1.3.5.2
Применим правило умножения к .
Этап 1.3.5.3
Возведем в степень .
Этап 1.3.6
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.3.6.1
Вынесем множитель из .
Этап 1.3.6.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.3.6.2.1
Вынесем множитель из .
Этап 1.3.6.2.2
Сократим общий множитель.
Этап 1.3.6.2.3
Перепишем это выражение.
Этап 2
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем, используя правило умножения на константу.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.2
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Перепишем в виде .
Этап 2.1.2.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.1.2.2.1
Применим правило степени и перемножим показатели, .
Этап 2.1.2.2.2
Умножим на .
Этап 2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Заменим все вхождения на .
Этап 2.3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Умножим на .
Этап 2.3.2
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Объединим и .
Этап 2.3.2.2
Умножим на .
Этап 2.3.2.3
Объединим и .
Этап 2.3.2.4
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.3.2.4.1
Перенесем влево от .
Этап 2.3.2.4.2
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 2.3.2.5
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 2.3.2.5.1
Вынесем множитель из .
Этап 2.3.2.5.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 2.3.2.5.2.1
Вынесем множитель из .
Этап 2.3.2.5.2.2
Сократим общий множитель.
Этап 2.3.2.5.2.3
Перепишем это выражение.
Этап 2.3.3
По правилу суммы производная по имеет вид .
Этап 2.3.4
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.5
Добавим и .
Этап 2.3.6
Поскольку является константой относительно , производная по равна .
Этап 2.3.7
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 2.3.7.1
Объединим и .
Этап 2.3.7.2
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.3.7.2.1
Умножим на .
Этап 2.3.7.2.2
Вынесем знак минуса перед дробью.
Этап 2.3.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.9
Умножим на .
Этап 3
Вторая производная по равна .