Математический анализ Примеры

Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 1.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Применим правило степени и перемножим показатели, .
Этап 1.2.2
Перенесем влево от .
Этап 1.3
Производная по равна .
Этап 1.4
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.5.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.5.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 1.5.1.2
Изменим порядок множителей в .
Этап 1.5.2
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.5.2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.5.2.1.1
Вынесем множитель из .
Этап 1.5.2.1.2
Вынесем множитель из .
Этап 1.5.2.1.3
Вынесем множитель из .
Этап 1.5.2.2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.5.2.2.1
Вынесем множитель из .
Этап 1.5.2.2.2
Вынесем множитель из .
Этап 1.5.2.2.3
Вынесем множитель из .
Этап 1.5.2.3
Вынесем за скобки отрицательное значение.
Этап 1.5.3
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.5.3.1
Вынесем множитель из .
Этап 1.5.3.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.5.3.2.1
Умножим на .
Этап 1.5.3.2.2
Сократим общий множитель.
Этап 1.5.3.2.3
Перепишем это выражение.
Этап 1.5.3.2.4
Разделим на .
Этап 1.5.4
Применим свойство дистрибутивности.
Этап 2
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.2.3
Производная по равна .
Этап 2.2.4
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.2.4.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.4.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.2.4.3
Заменим все вхождения на .
Этап 2.2.5
Поскольку является константой относительно , производная по равна .
Этап 2.2.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.7
Умножим на .
Этап 2.2.8
Перенесем влево от .
Этап 2.2.9
Перепишем в виде .
Этап 2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.3.3
Производная по равна .
Этап 2.3.4
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.3.4.1
Чтобы применить цепное правило, зададим как .
Этап 2.3.4.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.3.4.3
Заменим все вхождения на .
Этап 2.3.5
Поскольку является константой относительно , производная по равна .
Этап 2.3.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.7
Умножим на .
Этап 2.3.8
Перенесем влево от .
Этап 2.3.9
Перепишем в виде .
Этап 2.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.4.1
Применим свойство дистрибутивности.
Этап 2.4.2
Применим свойство дистрибутивности.
Этап 2.4.3
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 2.4.3.1
Умножим на .
Этап 2.4.3.2
Умножим на .
Этап 2.4.3.3
Умножим на .
Этап 2.4.3.4
Умножим на .
Этап 2.4.3.5
Умножим на .
Этап 2.4.3.6
Умножим на .
Этап 2.4.3.7
Добавим и .
Нажмите для увеличения количества этапов...
Этап 2.4.3.7.1
Изменим порядок и .
Этап 2.4.3.7.2
Добавим и .
Этап 2.4.3.8
Добавим и .
Нажмите для увеличения количества этапов...
Этап 2.4.3.8.1
Изменим порядок и .
Этап 2.4.3.8.2
Добавим и .
Этап 2.4.3.9
Добавим и .