Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем первую производную.
Этап 1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.2
Найдем значение .
Этап 1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3
Умножим на .
Этап 1.1.3
Найдем значение .
Этап 1.1.3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.1.3.1.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.3.1.2
Производная по равна .
Этап 1.1.3.1.3
Заменим все вхождения на .
Этап 1.1.3.2
Поскольку является константой относительно , производная по равна .
Этап 1.1.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.4
Умножим на .
Этап 1.1.3.5
Перенесем влево от .
Этап 1.2
Первая производная по равна .
Этап 2
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Вычтем из обеих частей уравнения.
Этап 2.3
Разделим каждый член на и упростим.
Этап 2.3.1
Разделим каждый член на .
Этап 2.3.2
Упростим левую часть.
Этап 2.3.2.1
Сократим общий множитель .
Этап 2.3.2.1.1
Сократим общий множитель.
Этап 2.3.2.1.2
Разделим на .
Этап 2.3.3
Упростим правую часть.
Этап 2.3.3.1
Разделим на .
Этап 2.4
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 2.5
Упростим правую часть.
Этап 2.5.1
Точное значение : .
Этап 2.6
Разделим каждый член на и упростим.
Этап 2.6.1
Разделим каждый член на .
Этап 2.6.2
Упростим левую часть.
Этап 2.6.2.1
Сократим общий множитель .
Этап 2.6.2.1.1
Сократим общий множитель.
Этап 2.6.2.1.2
Разделим на .
Этап 2.7
Функция косинуса отрицательна во втором и третьем квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в третьем квадранте.
Этап 2.8
Решим относительно .
Этап 2.8.1
Вычтем из .
Этап 2.8.2
Разделим каждый член на и упростим.
Этап 2.8.2.1
Разделим каждый член на .
Этап 2.8.2.2
Упростим левую часть.
Этап 2.8.2.2.1
Сократим общий множитель .
Этап 2.8.2.2.1.1
Сократим общий множитель.
Этап 2.8.2.2.1.2
Разделим на .
Этап 2.9
Найдем период .
Этап 2.9.1
Период функции можно вычислить по формуле .
Этап 2.9.2
Заменим на в формуле периода.
Этап 2.9.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 2.9.4
Сократим общий множитель и .
Этап 2.9.4.1
Вынесем множитель из .
Этап 2.9.4.2
Сократим общие множители.
Этап 2.9.4.2.1
Вынесем множитель из .
Этап 2.9.4.2.2
Сократим общий множитель.
Этап 2.9.4.2.3
Перепишем это выражение.
Этап 2.10
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 3
Этап 3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 4
Этап 4.1
Найдем значение в .
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Упростим.
Этап 4.1.2.1
Упростим каждый член.
Этап 4.1.2.1.1
Сократим общий множитель .
Этап 4.1.2.1.1.1
Сократим общий множитель.
Этап 4.1.2.1.1.2
Перепишем это выражение.
Этап 4.1.2.1.2
Сократим общий множитель .
Этап 4.1.2.1.2.1
Сократим общий множитель.
Этап 4.1.2.1.2.2
Перепишем это выражение.
Этап 4.1.2.1.3
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 4.1.2.1.4
Точное значение : .
Этап 4.1.2.2
Добавим и .
Этап 4.2
Найдем значение в .
Этап 4.2.1
Подставим вместо .
Этап 4.2.2
Упростим.
Этап 4.2.2.1
Упростим каждый член.
Этап 4.2.2.1.1
Сократим общий множитель .
Этап 4.2.2.1.1.1
Вынесем множитель из .
Этап 4.2.2.1.1.2
Сократим общий множитель.
Этап 4.2.2.1.1.3
Перепишем это выражение.
Этап 4.2.2.1.2
Сократим общий множитель .
Этап 4.2.2.1.2.1
Вынесем множитель из .
Этап 4.2.2.1.2.2
Сократим общий множитель.
Этап 4.2.2.1.2.3
Перепишем это выражение.
Этап 4.2.2.1.3
Удалим число полных оборотов , чтобы угол оказался больше или равен и меньше .
Этап 4.2.2.1.4
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 4.2.2.1.5
Точное значение : .
Этап 4.2.2.2
Добавим и .
Этап 4.3
Найдем значение в .
Этап 4.3.1
Подставим вместо .
Этап 4.3.2
Упростим.
Этап 4.3.2.1
Упростим каждый член.
Этап 4.3.2.1.1
Сократим общий множитель .
Этап 4.3.2.1.1.1
Сократим общий множитель.
Этап 4.3.2.1.1.2
Перепишем это выражение.
Этап 4.3.2.1.2
Сократим общий множитель .
Этап 4.3.2.1.2.1
Сократим общий множитель.
Этап 4.3.2.1.2.2
Перепишем это выражение.
Этап 4.3.2.1.3
Удалим число полных оборотов , чтобы угол оказался больше или равен и меньше .
Этап 4.3.2.1.4
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 4.3.2.1.5
Точное значение : .
Этап 4.3.2.2
Добавим и .
Этап 4.4
Найдем значение в .
Этап 4.4.1
Подставим вместо .
Этап 4.4.2
Упростим.
Этап 4.4.2.1
Упростим каждый член.
Этап 4.4.2.1.1
Сократим общий множитель .
Этап 4.4.2.1.1.1
Сократим общий множитель.
Этап 4.4.2.1.1.2
Перепишем это выражение.
Этап 4.4.2.1.2
Сократим общий множитель .
Этап 4.4.2.1.2.1
Сократим общий множитель.
Этап 4.4.2.1.2.2
Перепишем это выражение.
Этап 4.4.2.1.3
Удалим число полных оборотов , чтобы угол оказался больше или равен и меньше .
Этап 4.4.2.1.4
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 4.4.2.1.5
Точное значение : .
Этап 4.4.2.2
Добавим и .
Этап 4.5
Найдем значение в .
Этап 4.5.1
Подставим вместо .
Этап 4.5.2
Упростим.
Этап 4.5.2.1
Упростим каждый член.
Этап 4.5.2.1.1
Сократим общий множитель .
Этап 4.5.2.1.1.1
Вынесем множитель из .
Этап 4.5.2.1.1.2
Сократим общий множитель.
Этап 4.5.2.1.1.3
Перепишем это выражение.
Этап 4.5.2.1.2
Умножим на .
Этап 4.5.2.1.3
Сократим общий множитель .
Этап 4.5.2.1.3.1
Вынесем множитель из .
Этап 4.5.2.1.3.2
Сократим общий множитель.
Этап 4.5.2.1.3.3
Перепишем это выражение.
Этап 4.5.2.1.4
Умножим на .
Этап 4.5.2.1.5
Удалим число полных оборотов , чтобы угол оказался больше или равен и меньше .
Этап 4.5.2.1.6
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 4.5.2.1.7
Точное значение : .
Этап 4.5.2.2
Добавим и .
Этап 4.6
Перечислим все точки.
Этап 5