Математический анализ Примеры

Вычислить интеграл x^3 квадратный корень из x^2+1
Этап 1
Пусть , где . Тогда . Заметим, что поскольку , выражение положительно.
Этап 2
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.1
Применим формулу Пифагора.
Этап 2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 3
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 3.1
Перенесем .
Этап 3.2
Умножим на .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Возведем в степень .
Этап 3.2.2
Применим правило степени для объединения показателей.
Этап 3.3
Добавим и .
Этап 4
Вынесем за скобки.
Этап 5
Используя формулы Пифагора, запишем в виде .
Этап 6
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 6.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 6.1.1
Дифференцируем .
Этап 6.1.2
Производная по равна .
Этап 6.2
Переформулируем задачу с помощью и .
Этап 7
Умножим .
Этап 8
Упростим.
Нажмите для увеличения количества этапов...
Этап 8.1
Перепишем в виде .
Этап 8.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Применим правило степени для объединения показателей.
Этап 8.2.2
Добавим и .
Этап 9
Разделим данный интеграл на несколько интегралов.
Этап 10
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 11
По правилу степени интеграл по имеет вид .
Этап 12
По правилу степени интеграл по имеет вид .
Этап 13
Упростим.
Нажмите для увеличения количества этапов...
Этап 13.1
Объединим и .
Этап 13.2
Упростим.
Этап 14
Выполним обратную подстановку для каждой подставленной переменной интегрирования.
Нажмите для увеличения количества этапов...
Этап 14.1
Заменим все вхождения на .
Этап 14.2
Заменим все вхождения на .