Введите задачу...
Математический анализ Примеры
Этап 1
Применим правило , чтобы представить возведение в степень в виде радикала.
Этап 2
Пусть , где . Тогда . Заметим, что поскольку , выражение положительно.
Этап 3
Этап 3.1
Упростим .
Этап 3.1.1
Упростим каждый член.
Этап 3.1.1.1
Применим правило умножения к .
Этап 3.1.1.2
Возведем в степень .
Этап 3.1.1.3
Умножим на .
Этап 3.1.2
Вынесем множитель из .
Этап 3.1.3
Вынесем множитель из .
Этап 3.1.4
Вынесем множитель из .
Этап 3.1.5
Применим формулу Пифагора.
Этап 3.1.6
Упростим.
Этап 3.1.7
Перепишем в виде .
Этап 3.1.8
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 3.2
Упростим.
Этап 3.2.1
Умножим на .
Этап 3.2.2
Возведем в степень .
Этап 3.2.3
Возведем в степень .
Этап 3.2.4
Применим правило степени для объединения показателей.
Этап 3.2.5
Добавим и .
Этап 4
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
Используем формулу половинного угла для записи в виде .
Этап 6
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
Объединим и .
Этап 8
Разделим данный интеграл на несколько интегралов.
Этап 9
Применим правило дифференцирования постоянных функций.
Этап 10
Этап 10.1
Пусть . Найдем .
Этап 10.1.1
Дифференцируем .
Этап 10.1.2
Поскольку является константой относительно , производная по равна .
Этап 10.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 10.1.4
Умножим на .
Этап 10.2
Переформулируем задачу с помощью и .
Этап 11
Объединим и .
Этап 12
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 13
Интеграл по имеет вид .
Этап 14
Упростим.
Этап 15
Этап 15.1
Заменим все вхождения на .
Этап 15.2
Заменим все вхождения на .
Этап 15.3
Заменим все вхождения на .
Этап 16
Этап 16.1
Объединим и .
Этап 16.2
Применим свойство дистрибутивности.
Этап 16.3
Объединим и .
Этап 16.4
Умножим .
Этап 16.4.1
Умножим на .
Этап 16.4.2
Умножим на .
Этап 17
Изменим порядок членов.