Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Этап 2.1
Найдем первую производную.
Этап 2.1.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.1.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.1.1.2
Производная по равна .
Этап 2.1.1.3
Заменим все вхождения на .
Этап 2.1.2
Продифференцируем.
Этап 2.1.2.1
По правилу суммы производная по имеет вид .
Этап 2.1.2.2
Поскольку является константой относительно , производная относительно равна .
Этап 2.1.2.3
Добавим и .
Этап 2.1.2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.2.5
Объединим дроби.
Этап 2.1.2.5.1
Объединим и .
Этап 2.1.2.5.2
Объединим и .
Этап 2.1.3
Упростим.
Этап 2.1.3.1
Применим свойство дистрибутивности.
Этап 2.1.3.2
Умножим на .
Этап 2.1.3.3
Изменим порядок членов.
Этап 2.2
Первая производная по равна .
Этап 3
Этап 3.1
Пусть первая производная равна .
Этап 3.2
Приравняем числитель к нулю.
Этап 3.3
Разделим каждый член на и упростим.
Этап 3.3.1
Разделим каждый член на .
Этап 3.3.2
Упростим левую часть.
Этап 3.3.2.1
Сократим общий множитель .
Этап 3.3.2.1.1
Сократим общий множитель.
Этап 3.3.2.1.2
Разделим на .
Этап 3.3.3
Упростим правую часть.
Этап 3.3.3.1
Разделим на .
Этап 4
Значения, при которых производная равна : .
Этап 5
Найдя точку, в которой производная равна или не определена, проверим возрастание и убывание в интервале .
Этап 6
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Этап 6.2.1
Умножим на .
Этап 6.2.2
Упростим знаменатель.
Этап 6.2.2.1
Возведем в степень .
Этап 6.2.2.2
Умножим на .
Этап 6.2.2.3
Используем свойства произведения логарифмов: .
Этап 6.2.2.4
Умножим на .
Этап 6.2.3
Перепишем в виде .
Этап 6.2.4
Развернем , вынося из логарифма.
Этап 6.2.5
Сократим общий множитель и .
Этап 6.2.5.1
Вынесем множитель из .
Этап 6.2.5.2
Сократим общие множители.
Этап 6.2.5.2.1
Вынесем множитель из .
Этап 6.2.5.2.2
Сократим общий множитель.
Этап 6.2.5.2.3
Перепишем это выражение.
Этап 6.2.6
Вынесем знак минуса перед дробью.
Этап 6.2.7
Окончательный ответ: .
Этап 6.3
При производная имеет вид . Поскольку это отрицательная величина, функция убывает в диапазоне .
Убывание на , так как
Убывание на , так как
Этап 7
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Этап 7.2.1
Умножим на .
Этап 7.2.2
Упростим знаменатель.
Этап 7.2.2.1
Единица в любой степени равна единице.
Этап 7.2.2.2
Умножим на .
Этап 7.2.2.3
Используем свойства произведения логарифмов: .
Этап 7.2.2.4
Умножим на .
Этап 7.2.3
Перепишем в виде .
Этап 7.2.4
Развернем , вынося из логарифма.
Этап 7.2.5
Сократим общий множитель .
Этап 7.2.5.1
Сократим общий множитель.
Этап 7.2.5.2
Перепишем это выражение.
Этап 7.2.6
Окончательный ответ: .
Этап 7.3
При производная имеет вид . Поскольку это положительная величина, функция возрастает в диапазоне .
Возрастание в области , так как
Возрастание в области , так как
Этап 8
Перечислим интервалы, на которых функция возрастает и убывает.
Возрастание в области:
Убывание на:
Этап 9