Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем первую производную.
Этап 1.1.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.1.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.1.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.1.2.3
Заменим все вхождения на .
Этап 1.1.3
Продифференцируем.
Этап 1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.3
Упростим выражение.
Этап 1.1.3.3.1
Умножим на .
Этап 1.1.3.3.2
Перенесем влево от .
Этап 1.1.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.4
Упростим.
Этап 1.1.4.1
Изменим порядок членов.
Этап 1.1.4.2
Изменим порядок множителей в .
Этап 1.2
Найдем вторую производную.
Этап 1.2.1
По правилу суммы производная по имеет вид .
Этап 1.2.2
Найдем значение .
Этап 1.2.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.2.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.2.2.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.2.2.3.1
Чтобы применить цепное правило, зададим как .
Этап 1.2.2.3.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.2.2.3.3
Заменим все вхождения на .
Этап 1.2.2.4
Поскольку является константой относительно , производная по равна .
Этап 1.2.2.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.2.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.2.7
Умножим на .
Этап 1.2.2.8
Перенесем влево от .
Этап 1.2.3
Найдем значение .
Этап 1.2.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.3.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.2.3.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.2.3.3.1
Чтобы применить цепное правило, зададим как .
Этап 1.2.3.3.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.2.3.3.3
Заменим все вхождения на .
Этап 1.2.3.4
Поскольку является константой относительно , производная по равна .
Этап 1.2.3.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3.7
Умножим на .
Этап 1.2.3.8
Перенесем влево от .
Этап 1.2.3.9
Умножим на .
Этап 1.2.4
Упростим.
Этап 1.2.4.1
Применим свойство дистрибутивности.
Этап 1.2.4.2
Применим свойство дистрибутивности.
Этап 1.2.4.3
Объединим термины.
Этап 1.2.4.3.1
Умножим на .
Этап 1.2.4.3.2
Умножим на .
Этап 1.2.4.3.3
Умножим на .
Этап 1.2.4.3.4
Добавим и .
Этап 1.2.4.3.4.1
Перенесем .
Этап 1.2.4.3.4.2
Добавим и .
Этап 1.2.4.4
Изменим порядок членов.
Этап 1.2.4.5
Изменим порядок множителей в .
Этап 1.3
Вторая производная по равна .
Этап 2
Этап 2.1
Пусть вторая производная равна .
Этап 2.2
Вынесем множитель из .
Этап 2.2.1
Вынесем множитель из .
Этап 2.2.2
Вынесем множитель из .
Этап 2.2.3
Вынесем множитель из .
Этап 2.2.4
Вынесем множитель из .
Этап 2.2.5
Вынесем множитель из .
Этап 2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.4
Приравняем к , затем решим относительно .
Этап 2.4.1
Приравняем к .
Этап 2.4.2
Решим относительно .
Этап 2.4.2.1
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 2.4.2.2
Уравнение невозможно решить, так как выражение не определено.
Неопределенные
Этап 2.4.2.3
Нет решения для
Нет решения
Нет решения
Нет решения
Этап 2.5
Приравняем к , затем решим относительно .
Этап 2.5.1
Приравняем к .
Этап 2.5.2
Решим относительно .
Этап 2.5.2.1
Используем формулу для нахождения корней квадратного уравнения.
Этап 2.5.2.2
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 2.5.2.3
Упростим.
Этап 2.5.2.3.1
Упростим числитель.
Этап 2.5.2.3.1.1
Возведем в степень .
Этап 2.5.2.3.1.2
Умножим .
Этап 2.5.2.3.1.2.1
Умножим на .
Этап 2.5.2.3.1.2.2
Умножим на .
Этап 2.5.2.3.1.3
Вычтем из .
Этап 2.5.2.3.1.4
Перепишем в виде .
Этап 2.5.2.3.1.4.1
Вынесем множитель из .
Этап 2.5.2.3.1.4.2
Перепишем в виде .
Этап 2.5.2.3.1.5
Вынесем члены из-под знака корня.
Этап 2.5.2.3.2
Умножим на .
Этап 2.5.2.3.3
Упростим .
Этап 2.5.2.4
Упростим выражение, которое нужно решить для части значения .
Этап 2.5.2.4.1
Упростим числитель.
Этап 2.5.2.4.1.1
Возведем в степень .
Этап 2.5.2.4.1.2
Умножим .
Этап 2.5.2.4.1.2.1
Умножим на .
Этап 2.5.2.4.1.2.2
Умножим на .
Этап 2.5.2.4.1.3
Вычтем из .
Этап 2.5.2.4.1.4
Перепишем в виде .
Этап 2.5.2.4.1.4.1
Вынесем множитель из .
Этап 2.5.2.4.1.4.2
Перепишем в виде .
Этап 2.5.2.4.1.5
Вынесем члены из-под знака корня.
Этап 2.5.2.4.2
Умножим на .
Этап 2.5.2.4.3
Упростим .
Этап 2.5.2.4.4
Заменим на .
Этап 2.5.2.4.5
Перепишем в виде .
Этап 2.5.2.4.6
Вынесем множитель из .
Этап 2.5.2.4.7
Вынесем множитель из .
Этап 2.5.2.4.8
Вынесем знак минуса перед дробью.
Этап 2.5.2.5
Упростим выражение, которое нужно решить для части значения .
Этап 2.5.2.5.1
Упростим числитель.
Этап 2.5.2.5.1.1
Возведем в степень .
Этап 2.5.2.5.1.2
Умножим .
Этап 2.5.2.5.1.2.1
Умножим на .
Этап 2.5.2.5.1.2.2
Умножим на .
Этап 2.5.2.5.1.3
Вычтем из .
Этап 2.5.2.5.1.4
Перепишем в виде .
Этап 2.5.2.5.1.4.1
Вынесем множитель из .
Этап 2.5.2.5.1.4.2
Перепишем в виде .
Этап 2.5.2.5.1.5
Вынесем члены из-под знака корня.
Этап 2.5.2.5.2
Умножим на .
Этап 2.5.2.5.3
Упростим .
Этап 2.5.2.5.4
Заменим на .
Этап 2.5.2.5.5
Перепишем в виде .
Этап 2.5.2.5.6
Вынесем множитель из .
Этап 2.5.2.5.7
Вынесем множитель из .
Этап 2.5.2.5.8
Вынесем знак минуса перед дробью.
Этап 2.5.2.6
Окончательный ответ является комбинацией обоих решений.
Этап 2.6
Окончательным решением являются все значения, при которых верно.
Этап 3
Этап 3.1
Подставим в , чтобы найти значение .
Этап 3.1.1
Заменим в этом выражении переменную на .
Этап 3.1.2
Упростим результат.
Этап 3.1.2.1
Возведем в степень .
Этап 3.1.2.2
Умножим на .
Этап 3.1.2.3
Перепишем выражение, используя правило отрицательных степеней .
Этап 3.1.2.4
Объединим и .
Этап 3.1.2.5
Заменим приближением.
Этап 3.1.2.6
Возведем в степень .
Этап 3.1.2.7
Разделим на .
Этап 3.1.2.8
Окончательный ответ: .
Этап 3.2
Подставляя в , найдем точку . Эта точка может быть точкой перегиба.
Этап 3.3
Подставим в , чтобы найти значение .
Этап 3.3.1
Заменим в этом выражении переменную на .
Этап 3.3.2
Упростим результат.
Этап 3.3.2.1
Возведем в степень .
Этап 3.3.2.2
Умножим на .
Этап 3.3.2.3
Перепишем выражение, используя правило отрицательных степеней .
Этап 3.3.2.4
Объединим и .
Этап 3.3.2.5
Заменим приближением.
Этап 3.3.2.6
Возведем в степень .
Этап 3.3.2.7
Разделим на .
Этап 3.3.2.8
Окончательный ответ: .
Этап 3.4
Подставляя в , найдем точку . Эта точка может быть точкой перегиба.
Этап 3.5
Определим точки, которые могут быть точками перегиба.
Этап 4
Разобьем на интервалы вокруг точек, которые могут быть точками перегиба.
Этап 5
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Этап 5.2.1
Упростим каждый член.
Этап 5.2.1.1
Возведем в степень .
Этап 5.2.1.2
Умножим на .
Этап 5.2.1.3
Умножим на .
Этап 5.2.1.4
Перепишем выражение, используя правило отрицательных степеней .
Этап 5.2.1.5
Объединим и .
Этап 5.2.1.6
Заменим приближением.
Этап 5.2.1.7
Возведем в степень .
Этап 5.2.1.8
Разделим на .
Этап 5.2.1.9
Умножим на .
Этап 5.2.1.10
Умножим на .
Этап 5.2.1.11
Перепишем выражение, используя правило отрицательных степеней .
Этап 5.2.1.12
Объединим и .
Этап 5.2.1.13
Вынесем знак минуса перед дробью.
Этап 5.2.1.14
Заменим приближением.
Этап 5.2.1.15
Возведем в степень .
Этап 5.2.1.16
Разделим на .
Этап 5.2.1.17
Умножим на .
Этап 5.2.1.18
Умножим на .
Этап 5.2.1.19
Перепишем выражение, используя правило отрицательных степеней .
Этап 5.2.1.20
Объединим и .
Этап 5.2.2
Упростим путем добавления членов.
Этап 5.2.2.1
Вычтем из .
Этап 5.2.2.2
Добавим и .
Этап 5.2.3
Окончательный ответ: .
Этап 5.3
При вторая производная имеет вид . Поскольку это положительная величина, вторая производная возрастает на интервале .
Возрастание в области , так как
Возрастание в области , так как
Этап 6
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Этап 6.2.1
Упростим каждый член.
Этап 6.2.1.1
Возведем в степень .
Этап 6.2.1.2
Умножим на .
Этап 6.2.1.3
Умножим на .
Этап 6.2.1.4
Перепишем выражение, используя правило отрицательных степеней .
Этап 6.2.1.5
Объединим и .
Этап 6.2.1.6
Заменим приближением.
Этап 6.2.1.7
Возведем в степень .
Этап 6.2.1.8
Разделим на .
Этап 6.2.1.9
Умножим на .
Этап 6.2.1.10
Умножим на .
Этап 6.2.1.11
Перепишем выражение, используя правило отрицательных степеней .
Этап 6.2.1.12
Объединим и .
Этап 6.2.1.13
Вынесем знак минуса перед дробью.
Этап 6.2.1.14
Заменим приближением.
Этап 6.2.1.15
Возведем в степень .
Этап 6.2.1.16
Разделим на .
Этап 6.2.1.17
Умножим на .
Этап 6.2.1.18
Умножим на .
Этап 6.2.1.19
Перепишем выражение, используя правило отрицательных степеней .
Этап 6.2.1.20
Объединим и .
Этап 6.2.2
Упростим путем добавления членов.
Этап 6.2.2.1
Вычтем из .
Этап 6.2.2.2
Добавим и .
Этап 6.2.3
Окончательный ответ: .
Этап 6.3
При вторая производная имеет вид . Поскольку это отрицательная величина, вторая производная уменьшается на интервале .
Убывание на , так как
Убывание на , так как
Этап 7
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Этап 7.2.1
Упростим каждый член.
Этап 7.2.1.1
Возведем в степень .
Этап 7.2.1.2
Умножим на .
Этап 7.2.1.3
Умножим на .
Этап 7.2.1.4
Умножим на .
Этап 7.2.1.5
Умножим на .
Этап 7.2.1.6
Умножим на .
Этап 7.2.1.7
Умножим на .
Этап 7.2.1.8
Умножим на .
Этап 7.2.2
Упростим путем добавления членов.
Этап 7.2.2.1
Добавим и .
Этап 7.2.2.2
Добавим и .
Этап 7.2.3
Окончательный ответ: .
Этап 7.3
При вторая производная имеет вид . Поскольку это положительная величина, вторая производная возрастает на интервале .
Возрастание в области , так как
Возрастание в области , так как
Этап 8
Точка перегиба — это точка на кривой, в которой вогнутость меняет знак с плюса на минус или с минуса на плюс. Точки перегиба в данном случае: .
Этап 9