Математический анализ Примеры

Найти особые точки f(x)=32/(x^2-6x-7)
Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Продифференцируем, используя правило умножения на константу.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.2
Перепишем в виде .
Этап 1.1.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3
Заменим все вхождения на .
Этап 1.1.3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Умножим на .
Этап 1.1.3.2
По правилу суммы производная по имеет вид .
Этап 1.1.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.4
Поскольку является константой относительно , производная по равна .
Этап 1.1.3.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.6
Умножим на .
Этап 1.1.3.7
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.3.8
Добавим и .
Этап 1.1.4
Перепишем выражение, используя правило отрицательных степеней .
Этап 1.1.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.5.1
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 1.1.5.1.1
Объединим и .
Этап 1.1.5.1.2
Вынесем знак минуса перед дробью.
Этап 1.1.5.2
Изменим порядок множителей в .
Этап 1.2
Первая производная по равна .
Этап 2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Приравняем к .
Этап 2.3.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Добавим к обеим частям уравнения.
Этап 2.3.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.2.2.1
Разделим каждый член на .
Этап 2.3.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.2.2.2.1.1
Сократим общий множитель.
Этап 2.3.2.2.2.1.2
Разделим на .
Этап 2.3.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.2.2.3.1
Разделим на .
Этап 2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.1
Приравняем к .
Этап 2.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.2.1
Приравняем числитель к нулю.
Этап 2.4.2.2
Поскольку , решения отсутствуют.
Нет решения
Нет решения
Нет решения
Этап 2.5
Окончательным решением являются все значения, при которых верно.
Этап 3
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 3.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 3.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 3.2.1.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 3.2.1.2
Применим правило умножения к .
Этап 3.2.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3.2.3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.2.3.1
Приравняем к .
Этап 3.2.3.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.2.3.2.1
Приравняем к .
Этап 3.2.3.2.2
Добавим к обеим частям уравнения.
Этап 3.2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.2.4.1
Приравняем к .
Этап 3.2.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.2.4.2.1
Приравняем к .
Этап 3.2.4.2.2
Вычтем из обеих частей уравнения.
Этап 3.2.5
Окончательным решением являются все значения, при которых верно.
Этап 3.3
Уравнение не определено, если знаменатель равен , аргумент под знаком квадратного корня меньше или аргумент под знаком логарифма меньше или равен .
Этап 4
Вычислим для каждого значения , для которого производная равна или не определена.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1.1
Возведем в степень .
Этап 4.1.2.1.2
Умножим на .
Этап 4.1.2.1.3
Вычтем из .
Этап 4.1.2.1.4
Вычтем из .
Этап 4.1.2.2
Разделим на .
Этап 4.2
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Подставим вместо .
Этап 4.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1.1
Возведем в степень .
Этап 4.2.2.1.2
Умножим на .
Этап 4.2.2.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 4.2.2.2.1
Добавим и .
Этап 4.2.2.2.2
Вычтем из .
Этап 4.2.2.2.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 4.2.2.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Неопределенные
Неопределенные
Этап 4.3
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.3.1
Подставим вместо .
Этап 4.3.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1.1
Возведем в степень .
Этап 4.3.2.1.2
Умножим на .
Этап 4.3.2.2
Упростим путем вычитания чисел.
Нажмите для увеличения количества этапов...
Этап 4.3.2.2.1
Вычтем из .
Этап 4.3.2.2.2
Вычтем из .
Этап 4.3.2.2.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 4.3.2.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Неопределенные
Неопределенные
Этап 4.4
Перечислим все точки.
Этап 5