Математический анализ Примеры

Найти первообразную 19.21sin(1.7t+0.3)-16.32cos(1.7t+0.3)
Этап 1
Запишем в виде функции.
Этап 2
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 3
Составим интеграл, чтобы решить его.
Этап 4
Разделим данный интеграл на несколько интегралов.
Этап 5
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 6
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 6.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 6.1.1
Дифференцируем .
Этап 6.1.2
По правилу суммы производная по имеет вид .
Этап 6.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 6.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 6.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 6.1.3.3
Умножим на .
Этап 6.1.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 6.1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 6.1.4.2
Добавим и .
Этап 6.2
Переформулируем задачу с помощью и .
Этап 7
Объединим и .
Этап 8
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 9
Объединим и .
Этап 10
Интеграл по имеет вид .
Этап 11
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 12
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 12.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 12.1.1
Дифференцируем .
Этап 12.1.2
По правилу суммы производная по имеет вид .
Этап 12.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 12.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 12.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 12.1.3.3
Умножим на .
Этап 12.1.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 12.1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 12.1.4.2
Добавим и .
Этап 12.2
Переформулируем задачу с помощью и .
Этап 13
Объединим и .
Этап 14
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 15
Упростим.
Нажмите для увеличения количества этапов...
Этап 15.1
Объединим и .
Этап 15.2
Вынесем знак минуса перед дробью.
Этап 16
Интеграл по имеет вид .
Этап 17
Упростим.
Нажмите для увеличения количества этапов...
Этап 17.1
Упростим.
Этап 17.2
Умножим на .
Этап 18
Выполним обратную подстановку для каждой подставленной переменной интегрирования.
Нажмите для увеличения количества этапов...
Этап 18.1
Заменим все вхождения на .
Этап 18.2
Заменим все вхождения на .
Этап 19
Упростим.
Нажмите для увеличения количества этапов...
Этап 19.1
Разделим на .
Этап 19.2
Умножим на .
Этап 20
Ответ ― первообразная функции .