Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 3
Составим интеграл, чтобы решить его.
Этап 4
Этап 4.1
Пусть . Найдем .
Этап 4.1.1
Дифференцируем .
Этап 4.1.2
По правилу суммы производная по имеет вид .
Этап 4.1.3
Найдем значение .
Этап 4.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.3.3
Умножим на .
Этап 4.1.4
Продифференцируем, используя правило константы.
Этап 4.1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 4.1.4.2
Добавим и .
Этап 4.2
Переформулируем задачу с помощью и .
Этап 5
Объединим и .
Этап 6
Этап 6.1
Применим свойство дистрибутивности.
Этап 6.2
Умножим на .
Этап 6.3
Возведем в степень .
Этап 6.4
Применим правило степени для объединения показателей.
Этап 6.5
Добавим и .
Этап 6.6
Умножим на .
Этап 6.7
Умножим на .
Этап 6.8
Умножим на .
Этап 7
Разделим данный интеграл на несколько интегралов.
Этап 8
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 9
По правилу степени интеграл по имеет вид .
Этап 10
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 11
По правилу степени интеграл по имеет вид .
Этап 12
Этап 12.1
Упростим.
Этап 12.2
Упростим.
Этап 12.2.1
Умножим на .
Этап 12.2.2
Умножим на .
Этап 12.2.3
Умножим на .
Этап 12.2.4
Умножим на .
Этап 13
Заменим все вхождения на .
Этап 14
Ответ ― первообразная функции .