Математический анализ Примеры

Вычислить при помощи правила Лопиталя предел xsin((2pi)/x), если x стремится к infinity
Этап 1
Перепишем в виде .
Этап 2
Применим правило Лопиталя.
Нажмите для увеличения количества этапов...
Этап 2.1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Возьмем предел числителя и предел знаменателя.
Этап 2.1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1.1
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 2.1.2.1.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.1.2.2
Поскольку числитель стремится к вещественному числу, а знаменатель неограничен, дробь стремится к .
Этап 2.1.2.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 2.1.2.3.1
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.1.2.3.1.1
Умножим на .
Этап 2.1.2.3.1.2
Умножим на .
Этап 2.1.2.3.2
Точное значение : .
Этап 2.1.3
Поскольку числитель стремится к вещественному числу, а знаменатель неограничен, дробь стремится к .
Этап 2.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 2.3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Продифференцируем числитель и знаменатель.
Этап 2.3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.3.2.2
Производная по равна .
Этап 2.3.2.3
Заменим все вхождения на .
Этап 2.3.3
Поскольку является константой относительно , производная по равна .
Этап 2.3.4
Перепишем в виде .
Этап 2.3.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.6
Умножим на .
Этап 2.3.7
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.7.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 2.3.7.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 2.3.7.2.1
Объединим и .
Этап 2.3.7.2.2
Объединим и .
Этап 2.3.7.2.3
Вынесем знак минуса перед дробью.
Этап 2.3.7.2.4
Объединим и .
Этап 2.3.7.2.5
Перенесем влево от .
Этап 2.3.7.3
Изменим порядок множителей в .
Этап 2.3.8
Перепишем в виде .
Этап 2.3.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.10
Перепишем выражение, используя правило отрицательных степеней .
Этап 2.4
Умножим числитель на величину, обратную знаменателю.
Этап 2.5
Объединим множители.
Нажмите для увеличения количества этапов...
Этап 2.5.1
Умножим на .
Этап 2.5.2
Умножим на .
Этап 2.5.3
Объединим и .
Этап 2.6
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.6.1
Сократим общий множитель.
Этап 2.6.2
Разделим на .
Этап 3
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 3.1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3.2
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 3.3
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4
Поскольку числитель стремится к вещественному числу, а знаменатель неограничен, дробь стремится к .
Этап 5
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 5.1
Умножим .
Нажмите для увеличения количества этапов...
Этап 5.1.1
Умножим на .
Этап 5.1.2
Умножим на .
Этап 5.2
Точное значение : .
Этап 5.3
Умножим на .