Введите задачу...
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΡΠΈΠΌΠ΅ΡΡ
ΠΡΠ°ΠΏ 1
ΠΡΠ°ΠΏ 1.1
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΏΠ΅ΡΠ²ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ.
ΠΡΠ°ΠΏ 1.1.1
ΠΠΎ ΠΏΡΠ°Π²ΠΈΠ»Ρ ΡΡΠΌΠΌΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ .
ΠΡΠ°ΠΏ 1.1.2
ΠΠ°ΠΉΠ΄Π΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ .
ΠΡΠ°ΠΏ 1.1.2.1
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠ΅ΠΏΠ½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ (ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ), ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ ΠΈ .
ΠΡΠ°ΠΏ 1.1.2.1.1
Π§ΡΠΎΠ±Ρ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΡΠ΅ΠΏΠ½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π·Π°Π΄Π°Π΄ΠΈΠΌ ΠΊΠ°ΠΊ .
ΠΡΠ°ΠΏ 1.1.2.1.2
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ =.
ΠΡΠ°ΠΏ 1.1.2.1.3
ΠΠ°ΠΌΠ΅Π½ΠΈΠΌ Π²ΡΠ΅ Π²Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π½Π° .
ΠΡΠ°ΠΏ 1.1.2.2
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠΎΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ , ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΡΠ°Π²Π½Π° .
ΠΡΠ°ΠΏ 1.1.2.3
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ .
ΠΡΠ°ΠΏ 1.1.2.4
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 1.1.2.5
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ Π²Π»Π΅Π²ΠΎ ΠΎΡ .
ΠΡΠ°ΠΏ 1.1.3
ΠΠ°ΠΉΠ΄Π΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ .
ΠΡΠ°ΠΏ 1.1.3.1
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠ΅ΠΏΠ½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ (ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ), ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ ΠΈ .
ΠΡΠ°ΠΏ 1.1.3.1.1
Π§ΡΠΎΠ±Ρ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΡΠ΅ΠΏΠ½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π·Π°Π΄Π°Π΄ΠΈΠΌ ΠΊΠ°ΠΊ .
ΠΡΠ°ΠΏ 1.1.3.1.2
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ =.
ΠΡΠ°ΠΏ 1.1.3.1.3
ΠΠ°ΠΌΠ΅Π½ΠΈΠΌ Π²ΡΠ΅ Π²Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π½Π° .
ΠΡΠ°ΠΏ 1.1.3.2
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠΎΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ , ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΡΠ°Π²Π½Π° .
ΠΡΠ°ΠΏ 1.1.3.3
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ .
ΠΡΠ°ΠΏ 1.1.3.4
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 1.1.3.5
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ Π²Π»Π΅Π²ΠΎ ΠΎΡ .
ΠΡΠ°ΠΏ 1.1.3.6
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 1.2
ΠΠ΅ΡΠ²Π°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΡΠ°Π²Π½Π° .
ΠΡΠ°ΠΏ 2
ΠΡΠ°ΠΏ 2.1
ΠΡΡΡΡ ΠΏΠ΅ΡΠ²Π°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ°Π²Π½Π° .
ΠΡΠ°ΠΏ 2.2
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ Π² ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΠΏΡΠΈΠ±Π°Π²ΠΈΠ² Π΄Π°Π½Π½ΡΠΉ ΡΠ»Π΅Π½ ΠΊ ΠΎΠ±Π΅ΠΈΠΌ ΡΠ°ΡΡΡΠΌ.
ΠΡΠ°ΠΏ 2.3
ΠΠΎΠ·ΡΠΌΠ΅ΠΌ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΡΠΉ Π»ΠΎΠ³Π°ΡΠΈΡΠΌ ΠΎΠ±Π΅ΠΈΡ
ΡΠ°ΡΡΠ΅ΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΡΡΠΎΠ±Ρ ΡΠ΄Π°Π»ΠΈΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ ΠΈΠ· ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ.
ΠΡΠ°ΠΏ 2.4
Π Π°Π·Π²Π΅ΡΠ½Π΅ΠΌ Π»Π΅Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 2.4.1
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 2.4.2
Π Π°Π·Π²Π΅ΡΠ½Π΅ΠΌ , Π²ΡΠ½ΠΎΡΡ ΠΈΠ· Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠ°.
ΠΡΠ°ΠΏ 2.4.3
ΠΠ°ΡΡΡΠ°Π»ΡΠ½ΡΠΉ Π»ΠΎΠ³Π°ΡΠΈΡΠΌ ΡΠ°Π²Π΅Π½ .
ΠΡΠ°ΠΏ 2.4.4
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 2.5
Π Π°Π·Π²Π΅ΡΠ½Π΅ΠΌ ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 2.5.1
Π Π°Π·Π²Π΅ΡΠ½Π΅ΠΌ , Π²ΡΠ½ΠΎΡΡ ΠΈΠ· Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠ°.
ΠΡΠ°ΠΏ 2.5.2
ΠΠ°ΡΡΡΠ°Π»ΡΠ½ΡΠΉ Π»ΠΎΠ³Π°ΡΠΈΡΠΌ ΡΠ°Π²Π΅Π½ .
ΠΡΠ°ΠΏ 2.5.3
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 2.6
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ Π²ΡΠ΅ ΡΠ»Π΅Π½Ρ Ρ Π² Π»Π΅Π²ΡΡ ΡΠ°ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 2.6.1
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΊ ΠΎΠ±Π΅ΠΈΠΌ ΡΠ°ΡΡΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 2.6.2
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 2.7
ΠΡΡΡΠ΅ΠΌ ΠΈΠ· ΠΎΠ±Π΅ΠΈΡ
ΡΠ°ΡΡΠ΅ΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 2.8
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½ Π½Π° ΠΈ ΡΠΏΡΠΎΡΡΠΈΠΌ.
ΠΡΠ°ΠΏ 2.8.1
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½ Π½Π° .
ΠΡΠ°ΠΏ 2.8.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ Π»Π΅Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 2.8.2.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ .
ΠΡΠ°ΠΏ 2.8.2.1.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 2.8.2.1.2
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 2.8.3
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 2.8.3.1
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 2.8.3.2
Π Π°Π·Π²Π΅ΡΠ½Π΅ΠΌ , Π²ΡΠ½ΠΎΡΡ ΠΈΠ· Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠ°.
ΠΡΠ°ΠΏ 2.8.3.3
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΈ .
ΠΡΠ°ΠΏ 2.8.3.3.1
ΠΡΠ½Π΅ΡΠ΅ΠΌ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΈΠ· .
ΠΡΠ°ΠΏ 2.8.3.3.2
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠ΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ.
ΠΡΠ°ΠΏ 2.8.3.3.2.1
ΠΡΠ½Π΅ΡΠ΅ΠΌ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΈΠ· .
ΠΡΠ°ΠΏ 2.8.3.3.2.2
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 2.8.3.3.2.3
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 2.8.3.4
ΠΡΠ½Π΅ΡΠ΅ΠΌ Π·Π½Π°ΠΊ ΠΌΠΈΠ½ΡΡΠ° ΠΏΠ΅ΡΠ΅Π΄ Π΄ΡΠΎΠ±ΡΡ.
ΠΡΠ°ΠΏ 3
ΠΠ½Π°ΡΠ΅Π½ΠΈΡ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΡΡ
ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ°Π²Π½Π° : .
ΠΡΠ°ΠΏ 4
ΠΠ°ΠΉΠ΄Ρ ΡΠΎΡΠΊΡ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ°Π²Π½Π° ΠΈΠ»ΠΈ Π½Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π°, ΠΏΡΠΎΠ²Π΅ΡΠΈΠΌ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΠ΅ Π² ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ .
ΠΡΠ°ΠΏ 5
ΠΡΠ°ΠΏ 5.1
ΠΠ°ΠΌΠ΅Π½ΠΈΠΌ Π² ΡΡΠΎΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ Π½Π° .
ΠΡΠ°ΠΏ 5.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ.
ΠΡΠ°ΠΏ 5.2.1
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½.
ΠΡΠ°ΠΏ 5.2.1.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 5.2.1.2
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ
ΡΡΠ΅ΠΏΠ΅Π½Π΅ΠΉ .
ΠΡΠ°ΠΏ 5.2.1.3
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 5.2.1.4
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 5.2.2
ΠΠΊΠΎΠ½ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ ΠΎΡΠ²Π΅Ρ: .
ΠΡΠ°ΠΏ 5.3
Π£ΠΏΡΠΎΡΡΠΈΠΌ.
ΠΡΠ°ΠΏ 5.4
ΠΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ . ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΡΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΡΡΠ½ΠΊΡΠΈΡ ΡΠ±ΡΠ²Π°Π΅Ρ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ .
Π£Π±ΡΠ²Π°Π½ΠΈΠ΅ Π½Π° , ΡΠ°ΠΊ ΠΊΠ°ΠΊ
Π£Π±ΡΠ²Π°Π½ΠΈΠ΅ Π½Π° , ΡΠ°ΠΊ ΠΊΠ°ΠΊ
ΠΡΠ°ΠΏ 6
ΠΡΠ°ΠΏ 6.1
ΠΠ°ΠΌΠ΅Π½ΠΈΠΌ Π² ΡΡΠΎΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ Π½Π° .
ΠΡΠ°ΠΏ 6.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ.
ΠΡΠ°ΠΏ 6.2.1
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½.
ΠΡΠ°ΠΏ 6.2.1.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 6.2.1.2
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 6.2.1.3
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ
ΡΡΠ΅ΠΏΠ΅Π½Π΅ΠΉ .
ΠΡΠ°ΠΏ 6.2.2
ΠΠΊΠΎΠ½ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ ΠΎΡΠ²Π΅Ρ: .
ΠΡΠ°ΠΏ 6.3
Π£ΠΏΡΠΎΡΡΠΈΠΌ.
ΠΡΠ°ΠΏ 6.4
ΠΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ . ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΡΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΡΡΠ½ΠΊΡΠΈΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ .
ΠΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ Π² ΠΎΠ±Π»Π°ΡΡΠΈ , ΡΠ°ΠΊ ΠΊΠ°ΠΊ
ΠΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ Π² ΠΎΠ±Π»Π°ΡΡΠΈ , ΡΠ°ΠΊ ΠΊΠ°ΠΊ
ΠΡΠ°ΠΏ 7
ΠΠ΅ΡΠ΅ΡΠΈΡΠ»ΠΈΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Ρ, Π½Π° ΠΊΠΎΡΠΎΡΡΡ
ΡΡΠ½ΠΊΡΠΈΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ ΠΈ ΡΠ±ΡΠ²Π°Π΅Ρ.
ΠΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ Π² ΠΎΠ±Π»Π°ΡΡΠΈ:
Π£Π±ΡΠ²Π°Π½ΠΈΠ΅ Π½Π°:
ΠΡΠ°ΠΏ 8