Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Этап 2.1
Продифференцируем.
Этап 2.1.1
Сократим общий множитель и .
Этап 2.1.1.1
Вынесем множитель из .
Этап 2.1.1.2
Вынесем множитель из .
Этап 2.1.1.3
Вынесем множитель из .
Этап 2.1.1.4
Сократим общие множители.
Этап 2.1.1.4.1
Вынесем множитель из .
Этап 2.1.1.4.2
Сократим общий множитель.
Этап 2.1.1.4.3
Перепишем это выражение.
Этап 2.1.1.4.4
Разделим на .
Этап 2.1.2
По правилу суммы производная по имеет вид .
Этап 2.1.3
Поскольку является константой относительно , производная по равна .
Этап 2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.3
Поскольку является константой относительно , производная по равна .
Этап 2.4
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.4.1
Чтобы применить цепное правило, зададим как .
Этап 2.4.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.4.3
Заменим все вхождения на .
Этап 2.5
Продифференцируем.
Этап 2.5.1
Поскольку является константой относительно , производная по равна .
Этап 2.5.2
Умножим на .
Этап 2.5.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.5.4
Умножим на .
Этап 3
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Найдем значение .
Этап 3.2.1
Поскольку является константой относительно , производная по равна .
Этап 3.2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.3
Найдем значение .
Этап 3.3.1
Поскольку является константой относительно , производная по равна .
Этап 3.3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.3.2.1
Чтобы применить цепное правило, зададим как .
Этап 3.3.2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.3.2.3
Заменим все вхождения на .
Этап 3.3.3
Поскольку является константой относительно , производная по равна .
Этап 3.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.5
Умножим на .
Этап 3.3.6
Перенесем влево от .
Этап 3.3.7
Перепишем в виде .
Этап 3.3.8
Умножим на .
Этап 4
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 5
Этап 5.1
Найдем первую производную.
Этап 5.1.1
Продифференцируем.
Этап 5.1.1.1
Сократим общий множитель и .
Этап 5.1.1.1.1
Вынесем множитель из .
Этап 5.1.1.1.2
Вынесем множитель из .
Этап 5.1.1.1.3
Вынесем множитель из .
Этап 5.1.1.1.4
Сократим общие множители.
Этап 5.1.1.1.4.1
Вынесем множитель из .
Этап 5.1.1.1.4.2
Сократим общий множитель.
Этап 5.1.1.1.4.3
Перепишем это выражение.
Этап 5.1.1.1.4.4
Разделим на .
Этап 5.1.1.2
По правилу суммы производная по имеет вид .
Этап 5.1.1.3
Поскольку является константой относительно , производная по равна .
Этап 5.1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 5.1.3
Поскольку является константой относительно , производная по равна .
Этап 5.1.4
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 5.1.4.1
Чтобы применить цепное правило, зададим как .
Этап 5.1.4.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 5.1.4.3
Заменим все вхождения на .
Этап 5.1.5
Продифференцируем.
Этап 5.1.5.1
Поскольку является константой относительно , производная по равна .
Этап 5.1.5.2
Умножим на .
Этап 5.1.5.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.5.4
Умножим на .
Этап 5.2
Первая производная по равна .
Этап 6
Этап 6.1
Пусть первая производная равна .
Этап 6.2
Перенесем в правую часть уравнения, прибавив данный член к обеим частям.
Этап 6.3
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 6.4
Развернем левую часть.
Этап 6.4.1
Перепишем в виде .
Этап 6.4.2
Развернем , вынося из логарифма.
Этап 6.4.3
Натуральный логарифм равен .
Этап 6.4.4
Умножим на .
Этап 6.5
Развернем правую часть.
Этап 6.5.1
Перепишем в виде .
Этап 6.5.2
Развернем , вынося из логарифма.
Этап 6.5.3
Натуральный логарифм равен .
Этап 6.5.4
Умножим на .
Этап 6.6
Перенесем все члены с логарифмами в левую часть уравнения.
Этап 6.7
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 6.8
Разделим на .
Этап 6.9
Натуральный логарифм равен .
Этап 6.10
Вычтем из .
Этап 6.11
Поскольку находится в правой части уравнения, поменяем стороны так, чтобы оно оказалось в левой части уравнения.
Этап 6.12
Разделим каждый член на и упростим.
Этап 6.12.1
Разделим каждый член на .
Этап 6.12.2
Упростим левую часть.
Этап 6.12.2.1
Сократим общий множитель .
Этап 6.12.2.1.1
Сократим общий множитель.
Этап 6.12.2.1.2
Разделим на .
Этап 6.12.3
Упростим правую часть.
Этап 6.12.3.1
Разделим на .
Этап 7
Этап 7.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 8
Критические точки, которые необходимо вычислить.
Этап 9
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 10
Этап 10.1
Упростим каждый член.
Этап 10.1.1
Любое число в степени равно .
Этап 10.1.2
Умножим на .
Этап 10.1.3
Умножим на .
Этап 10.1.4
Любое число в степени равно .
Этап 10.1.5
Умножим на .
Этап 10.2
Добавим и .
Этап 11
— локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
— локальный минимум
Этап 12
Этап 12.1
Заменим в этом выражении переменную на .
Этап 12.2
Упростим результат.
Этап 12.2.1
Сократим общий множитель и .
Этап 12.2.1.1
Вынесем множитель из .
Этап 12.2.1.2
Вынесем множитель из .
Этап 12.2.1.3
Вынесем множитель из .
Этап 12.2.1.4
Сократим общие множители.
Этап 12.2.1.4.1
Вынесем множитель из .
Этап 12.2.1.4.2
Сократим общий множитель.
Этап 12.2.1.4.3
Перепишем это выражение.
Этап 12.2.1.4.4
Разделим на .
Этап 12.2.2
Упростим каждый член.
Этап 12.2.2.1
Любое число в степени равно .
Этап 12.2.2.2
Умножим на .
Этап 12.2.2.3
Умножим на .
Этап 12.2.2.4
Любое число в степени равно .
Этап 12.2.2.5
Умножим на .
Этап 12.2.3
Добавим и .
Этап 12.2.4
Окончательный ответ: .
Этап 13
Это локальные экстремумы .
— локальный минимум
Этап 14