Математический анализ Примеры

Найти интервалы убывания и возрастания с помощью производных 9cos(x)^4
Этап 1
Запишем в виде функции.
Этап 2
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 2.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.2.3
Заменим все вхождения на .
Этап 2.1.3
Умножим на .
Этап 2.1.4
Производная по равна .
Этап 2.1.5
Умножим на .
Этап 2.2
Первая производная по равна .
Этап 3
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 3.1
Пусть первая производная равна .
Этап 3.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3.3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Приравняем к .
Этап 3.3.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 3.3.2.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.3.2.2.1
Перепишем в виде .
Этап 3.3.2.2.2
Вынесем члены из-под знака корня, предполагая, что это вещественные числа.
Этап 3.3.2.3
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 3.3.2.4
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.2.4.1
Точное значение : .
Этап 3.3.2.5
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 3.3.2.6
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.3.2.6.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.3.2.6.2
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 3.3.2.6.2.1
Объединим и .
Этап 3.3.2.6.2.2
Объединим числители над общим знаменателем.
Этап 3.3.2.6.3
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 3.3.2.6.3.1
Умножим на .
Этап 3.3.2.6.3.2
Вычтем из .
Этап 3.3.2.7
Найдем период .
Нажмите для увеличения количества этапов...
Этап 3.3.2.7.1
Период функции можно вычислить по формуле .
Этап 3.3.2.7.2
Заменим на в формуле периода.
Этап 3.3.2.7.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 3.3.2.7.4
Разделим на .
Этап 3.3.2.8
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 3.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.4.1
Приравняем к .
Этап 3.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.4.2.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 3.4.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.4.2.2.1
Точное значение : .
Этап 3.4.2.3
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 3.4.2.4
Вычтем из .
Этап 3.4.2.5
Найдем период .
Нажмите для увеличения количества этапов...
Этап 3.4.2.5.1
Период функции можно вычислить по формуле .
Этап 3.4.2.5.2
Заменим на в формуле периода.
Этап 3.4.2.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 3.4.2.5.4
Разделим на .
Этап 3.4.2.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 3.5
Окончательным решением являются все значения, при которых верно.
, для любого целого
Этап 3.6
Объединим ответы.
, для любого целого
, для любого целого
Этап 4
Значения, при которых производная равна : .
Этап 5
Найдя точку, в которой производная равна или не определена, проверим возрастание и убывание в интервале .
Этап 6
Подставим значение из интервала в производную, чтобы определить, возрастает функция или убывает.
Нажмите для увеличения количества этапов...
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Окончательный ответ: .
Этап 6.3
Упростим.
Этап 6.4
При производная имеет вид . Поскольку это отрицательная величина, функция убывает в диапазоне .
Убывание на , так как
Убывание на , так как
Этап 7
Подставим значение из интервала в производную, чтобы определить, возрастает функция или убывает.
Нажмите для увеличения количества этапов...
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Окончательный ответ: .
Этап 7.3
Упростим.
Этап 7.4
При производная имеет вид . Поскольку это отрицательная величина, функция убывает в диапазоне .
Убывание на , так как
Убывание на , так как
Этап 8
Перечислим интервалы, на которых функция возрастает и убывает.
Убывание на:
Этап 9