Математический анализ Примеры

Найти интервалы убывания и возрастания с помощью производных 2.95x+426.52
Этап 1
Запишем в виде функции.
Этап 2
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 2.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 2.1.1
По правилу суммы производная по имеет вид .
Этап 2.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.2.3
Умножим на .
Этап 2.1.3
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 2.1.3.1
Поскольку является константой относительно , производная относительно равна .
Этап 2.1.3.2
Добавим и .
Этап 2.2
Первая производная по равна .
Этап 3
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 3.1
Пусть первая производная равна .
Этап 3.2
Поскольку , решения отсутствуют.
Нет решения
Нет решения
Этап 4
В области определения исходной задачи нет значений , при которых производная равна или не определена.
Критические точки не найдены
Этап 5
Нет точек, в которых производная была бы равна или не определена. проверяется на возрастание или убывание на интервале .
Этап 6
Подставим любое число, например , из интервала в производную , чтобы проверить, является результат отрицательным или положительным. Если результат отрицательный, график убывает на интервале . Если результат положительный, график возрастает на интервале .
Нажмите для увеличения количества этапов...
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Окончательный ответ: .
Этап 7
Результат подстановки в равен и является положительным, поэтому график возрастает на интервале .
Возрастание в области , так как
Этап 8
Возрастание на интервале означает, что функция постоянно возрастает.
Всегда возрастающие
Этап 9