Математический анализ Примеры

Найти вогнутость 2cos(x)+cos(x)^2
Этап 1
Запишем в виде функции.
Этап 2
Find the values where the second derivative is equal to .
Нажмите для увеличения количества этапов...
Этап 2.1
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 2.1.1.1
По правилу суммы производная по имеет вид .
Этап 2.1.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.1.2.2
Производная по равна .
Этап 2.1.1.2.3
Умножим на .
Этап 2.1.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.1.3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1.1.3.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.1.1.3.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.1.3.1.3
Заменим все вхождения на .
Этап 2.1.1.3.2
Производная по равна .
Этап 2.1.1.3.3
Умножим на .
Этап 2.1.1.4
Изменим порядок членов.
Этап 2.1.2
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
По правилу суммы производная по имеет вид .
Этап 2.1.2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.2.2.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.1.2.2.3
Производная по равна .
Этап 2.1.2.2.4
Производная по равна .
Этап 2.1.2.2.5
Возведем в степень .
Этап 2.1.2.2.6
Возведем в степень .
Этап 2.1.2.2.7
Применим правило степени для объединения показателей.
Этап 2.1.2.2.8
Добавим и .
Этап 2.1.2.2.9
Возведем в степень .
Этап 2.1.2.2.10
Возведем в степень .
Этап 2.1.2.2.11
Применим правило степени для объединения показателей.
Этап 2.1.2.2.12
Добавим и .
Этап 2.1.2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.2.3.2
Производная по равна .
Этап 2.1.2.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.1.2.4.1
Применим свойство дистрибутивности.
Этап 2.1.2.4.2
Умножим на .
Этап 2.1.3
Вторая производная по равна .
Этап 2.2
Приравняем вторую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Пусть вторая производная равна .
Этап 2.2.2
Построим график каждой части уравнения. Решение — абсцисса (координата x) точки пересечения.
, для любого целого
, для любого целого
, для любого целого
Этап 3
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Интервальное представление:
Обозначение построения множества:
Этап 4
Создадим интервалы вокруг значений , в которых вторая производная равна нулю или не определена.
Этап 5
Подставим любое число из интервала в выражение для второй производной и вычислим выпуклость.
Нажмите для увеличения количества этапов...
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.2.1.1
Точное значение : .
Этап 5.2.1.2
Единица в любой степени равна единице.
Этап 5.2.1.3
Умножим на .
Этап 5.2.1.4
Точное значение : .
Этап 5.2.1.5
Возведение в любую положительную степень дает .
Этап 5.2.1.6
Умножим на .
Этап 5.2.1.7
Точное значение : .
Этап 5.2.1.8
Умножим на .
Этап 5.2.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Добавим и .
Этап 5.2.2.2
Вычтем из .
Этап 5.2.3
Окончательный ответ: .
Этап 5.3
График вогнут вниз на интервале , поскольку имеет отрицательное значение.
Вогнутость вниз на интервале , поскольку меньше нуля
Вогнутость вниз на интервале , поскольку меньше нуля
Этап 6