Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.2
Найдем предел числителя.
Этап 1.2.1
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 1.2.2
Найдем предел , подставив значение для .
Этап 1.2.3
Возведение в любую положительную степень дает .
Этап 1.3
Найдем предел знаменателя.
Этап 1.3.1
Вычислим предел.
Этап 1.3.1.1
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 1.3.1.2
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 1.3.2
Найдем предел , подставив значение для .
Этап 1.3.3
Упростим ответ.
Этап 1.3.3.1
Точное значение : .
Этап 1.3.3.2
Возведение в любую положительную степень дает .
Этап 1.3.3.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3
Этап 3.1
Продифференцируем числитель и знаменатель.
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.3.1
Чтобы применить цепное правило, зададим как .
Этап 3.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.3
Заменим все вхождения на .
Этап 3.4
Производная по равна .
Этап 3.5
Упростим.
Этап 3.5.1
Изменим порядок множителей в .
Этап 3.5.2
Изменим порядок и .
Этап 3.5.3
Изменим порядок и .
Этап 3.5.4
Применим формулу двойного угла для синуса.
Этап 4
Этап 4.1
Найдем предел числителя и предел знаменателя.
Этап 4.1.1
Возьмем предел числителя и предел знаменателя.
Этап 4.1.2
Найдем предел числителя.
Этап 4.1.2.1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4.1.2.2
Найдем предел , подставив значение для .
Этап 4.1.2.3
Умножим на .
Этап 4.1.3
Найдем предел знаменателя.
Этап 4.1.3.1
Вычислим предел.
Этап 4.1.3.1.1
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 4.1.3.1.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4.1.3.2
Найдем предел , подставив значение для .
Этап 4.1.3.3
Упростим ответ.
Этап 4.1.3.3.1
Умножим на .
Этап 4.1.3.3.2
Точное значение : .
Этап 4.1.3.3.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 4.1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 4.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 4.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 4.3
Найдем производную числителя и знаменателя.
Этап 4.3.1
Продифференцируем числитель и знаменатель.
Этап 4.3.2
Поскольку является константой относительно , производная по равна .
Этап 4.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3.4
Умножим на .
Этап 4.3.5
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 4.3.5.1
Чтобы применить цепное правило, зададим как .
Этап 4.3.5.2
Производная по равна .
Этап 4.3.5.3
Заменим все вхождения на .
Этап 4.3.6
Поскольку является константой относительно , производная по равна .
Этап 4.3.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3.8
Умножим на .
Этап 4.3.9
Перенесем влево от .
Этап 4.4
Сократим общий множитель .
Этап 4.4.1
Сократим общий множитель.
Этап 4.4.2
Перепишем это выражение.
Этап 4.5
Переведем в .
Этап 4.6
Вычислим предел.
Этап 4.6.1
Перенесем предел внутрь тригонометрической функции, поскольку секанс — непрерывная функция.
Этап 4.6.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4.7
Найдем предел , подставив значение для .
Этап 4.8
Упростим ответ.
Этап 4.8.1
Умножим на .
Этап 4.8.2
Точное значение : .