Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.1.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3
Заменим все вхождения на .
Этап 1.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.3
Объединим и .
Этап 1.4
Объединим числители над общим знаменателем.
Этап 1.5
Упростим числитель.
Этап 1.5.1
Умножим на .
Этап 1.5.2
Вычтем из .
Этап 1.6
Объединим дроби.
Этап 1.6.1
Вынесем знак минуса перед дробью.
Этап 1.6.2
Объединим и .
Этап 1.6.3
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 1.7
По правилу суммы производная по имеет вид .
Этап 1.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.9
Поскольку является константой относительно , производная относительно равна .
Этап 1.10
Объединим дроби.
Этап 1.10.1
Добавим и .
Этап 1.10.2
Объединим и .
Этап 1.10.3
Умножим на .
Этап 1.10.4
Объединим и .
Этап 2
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 2.3
Продифференцируем, используя правило степени.
Этап 2.3.1
Перемножим экспоненты в .
Этап 2.3.1.1
Применим правило степени и перемножим показатели, .
Этап 2.3.1.2
Объединим и .
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Умножим на .
Этап 2.4
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.4.1
Чтобы применить цепное правило, зададим как .
Этап 2.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.4.3
Заменим все вхождения на .
Этап 2.5
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.6
Объединим и .
Этап 2.7
Объединим числители над общим знаменателем.
Этап 2.8
Упростим числитель.
Этап 2.8.1
Умножим на .
Этап 2.8.2
Вычтем из .
Этап 2.9
Объединим дроби.
Этап 2.9.1
Вынесем знак минуса перед дробью.
Этап 2.9.2
Объединим и .
Этап 2.9.3
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 2.9.4
Объединим и .
Этап 2.10
По правилу суммы производная по имеет вид .
Этап 2.11
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.12
Поскольку является константой относительно , производная относительно равна .
Этап 2.13
Объединим дроби.
Этап 2.13.1
Добавим и .
Этап 2.13.2
Умножим на .
Этап 2.13.3
Объединим и .
Этап 2.13.4
Объединим и .
Этап 2.14
Возведем в степень .
Этап 2.15
Возведем в степень .
Этап 2.16
Применим правило степени для объединения показателей.
Этап 2.17
Добавим и .
Этап 2.18
Вынесем знак минуса перед дробью.
Этап 2.19
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.20
Объединим и .
Этап 2.21
Объединим числители над общим знаменателем.
Этап 2.22
Умножим на , сложив экспоненты.
Этап 2.22.1
Перенесем .
Этап 2.22.2
Применим правило степени для объединения показателей.
Этап 2.22.3
Объединим числители над общим знаменателем.
Этап 2.22.4
Добавим и .
Этап 2.22.5
Разделим на .
Этап 2.23
Упростим .
Этап 2.24
Перенесем влево от .
Этап 2.25
Перепишем в виде произведения.
Этап 2.26
Умножим на .
Этап 2.27
Умножим на , сложив экспоненты.
Этап 2.27.1
Перенесем .
Этап 2.27.2
Применим правило степени для объединения показателей.
Этап 2.27.3
Объединим числители над общим знаменателем.
Этап 2.27.4
Добавим и .
Этап 2.28
Умножим на .
Этап 2.29
Умножим на .
Этап 2.30
Упростим.
Этап 2.30.1
Применим свойство дистрибутивности.
Этап 2.30.2
Применим свойство дистрибутивности.
Этап 2.30.3
Упростим числитель.
Этап 2.30.3.1
Упростим каждый член.
Этап 2.30.3.1.1
Умножим на .
Этап 2.30.3.1.2
Умножим .
Этап 2.30.3.1.2.1
Умножим на .
Этап 2.30.3.1.2.2
Умножим на .
Этап 2.30.3.1.3
Умножим на .
Этап 2.30.3.2
Вычтем из .
Этап 2.30.4
Вынесем множитель из .
Этап 2.30.4.1
Вынесем множитель из .
Этап 2.30.4.2
Вынесем множитель из .
Этап 2.30.4.3
Вынесем множитель из .