Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем первую производную.
Этап 1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.2
Найдем значение .
Этап 1.1.2.1
Перепишем в виде .
Этап 1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3
Производная по равна .
Этап 1.1.4
Упростим.
Этап 1.1.4.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 1.1.4.2
Изменим порядок членов.
Этап 1.2
Первая производная по равна .
Этап 2
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Найдем НОК знаменателей членов уравнения.
Этап 2.2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2.2
Так как содержит и числа, и переменные, НОК можно найти в два этапа. Найдем НОК для числовой части , затем найдем НОК для части с переменной .
Этап 2.2.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.2.4
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 2.2.5
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.2.6
Множителем является само значение .
встречается раз.
Этап 2.2.7
Множители — , то есть , умноженный сам на себя раз.
встречается раз.
Этап 2.2.8
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.2.9
Умножим на .
Этап 2.3
Каждый член в умножим на , чтобы убрать дроби.
Этап 2.3.1
Умножим каждый член на .
Этап 2.3.2
Упростим левую часть.
Этап 2.3.2.1
Упростим каждый член.
Этап 2.3.2.1.1
Сократим общий множитель .
Этап 2.3.2.1.1.1
Вынесем множитель из .
Этап 2.3.2.1.1.2
Сократим общий множитель.
Этап 2.3.2.1.1.3
Перепишем это выражение.
Этап 2.3.2.1.2
Сократим общий множитель .
Этап 2.3.2.1.2.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 2.3.2.1.2.2
Сократим общий множитель.
Этап 2.3.2.1.2.3
Перепишем это выражение.
Этап 2.3.3
Упростим правую часть.
Этап 2.3.3.1
Умножим на .
Этап 2.4
Добавим к обеим частям уравнения.
Этап 3
Этап 3.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 3.2
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 3.3
Решим относительно .
Этап 3.3.1
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 3.3.2
Упростим .
Этап 3.3.2.1
Перепишем в виде .
Этап 3.3.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 3.3.2.3
Плюс или минус равно .
Этап 4
Этап 4.1
Найдем значение в .
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Упростим.
Этап 4.1.2.1
Упростим каждый член.
Этап 4.1.2.1.1
Разделим на .
Этап 4.1.2.1.2
Натуральный логарифм равен .
Этап 4.1.2.2
Добавим и .
Этап 4.2
Найдем значение в .
Этап 4.2.1
Подставим вместо .
Этап 4.2.2
Натуральный логарифм нуля не определен.
Неопределенные
Неопределенные
Этап 4.3
Перечислим все точки.
Этап 5