Введите задачу...
Математический анализ Примеры
Этап 1
Применим свойство дистрибутивности.
Этап 2
Примем как функцию .
Этап 3
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Найдем значение .
Этап 3.2.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3.2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Найдем значение .
Этап 3.3.1
Поскольку является константой относительно , производная по равна .
Этап 3.3.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.4
Упростим.
Этап 3.4.1
Изменим порядок членов.
Этап 3.4.2
Изменим порядок множителей в .
Этап 4
Этап 4.1
Разложим левую часть уравнения на множители.
Этап 4.1.1
Вынесем множитель из .
Этап 4.1.1.1
Вынесем множитель из .
Этап 4.1.1.2
Вынесем множитель из .
Этап 4.1.1.3
Вынесем множитель из .
Этап 4.1.1.4
Вынесем множитель из .
Этап 4.1.1.5
Вынесем множитель из .
Этап 4.1.2
Разложим на множители.
Этап 4.1.2.1
Разложим на множители, используя метод группировки.
Этап 4.1.2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 4.1.2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 4.1.2.2
Избавимся от ненужных скобок.
Этап 4.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4.3
Приравняем к , затем решим относительно .
Этап 4.3.1
Приравняем к .
Этап 4.3.2
Решим относительно .
Этап 4.3.2.1
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 4.3.2.2
Уравнение невозможно решить, так как выражение не определено.
Неопределенные
Этап 4.3.2.3
Нет решения для
Нет решения
Нет решения
Нет решения
Этап 4.4
Приравняем к , затем решим относительно .
Этап 4.4.1
Приравняем к .
Этап 4.4.2
Добавим к обеим частям уравнения.
Этап 4.5
Приравняем к , затем решим относительно .
Этап 4.5.1
Приравняем к .
Этап 4.5.2
Вычтем из обеих частей уравнения.
Этап 4.6
Окончательным решением являются все значения, при которых верно.
Этап 5
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Этап 5.2.1
Возведем в степень .
Этап 5.2.2
Вычтем из .
Этап 5.2.3
Окончательный ответ: .
Этап 6
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Этап 6.2.1
Упростим каждый член.
Этап 6.2.1.1
Возведем в степень .
Этап 6.2.1.2
Перепишем выражение, используя правило отрицательных степеней .
Этап 6.2.1.3
Объединим и .
Этап 6.2.1.4
Перепишем выражение, используя правило отрицательных степеней .
Этап 6.2.1.5
Объединим и .
Этап 6.2.1.6
Вынесем знак минуса перед дробью.
Этап 6.2.2
Объединим дроби.
Этап 6.2.2.1
Объединим числители над общим знаменателем.
Этап 6.2.2.2
Вычтем из .
Этап 6.2.3
Окончательный ответ: .
Этап 7
Горизонтальные касательные функции ― .
Этап 8