Математический анализ Примеры

Найти точки перегиба (x^5)/10+(x^4)/8+2
Этап 1
Запишем в виде функции.
Этап 2
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 2.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 2.1.1
По правилу суммы производная по имеет вид .
Этап 2.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.2.3
Объединим и .
Этап 2.1.2.4
Объединим и .
Этап 2.1.2.5
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 2.1.2.5.1
Вынесем множитель из .
Этап 2.1.2.5.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 2.1.2.5.2.1
Вынесем множитель из .
Этап 2.1.2.5.2.2
Сократим общий множитель.
Этап 2.1.2.5.2.3
Перепишем это выражение.
Этап 2.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.3.3
Объединим и .
Этап 2.1.3.4
Объединим и .
Этап 2.1.3.5
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 2.1.3.5.1
Вынесем множитель из .
Этап 2.1.3.5.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 2.1.3.5.2.1
Вынесем множитель из .
Этап 2.1.3.5.2.2
Сократим общий множитель.
Этап 2.1.3.5.2.3
Перепишем это выражение.
Этап 2.1.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 2.1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 2.1.4.2
Добавим и .
Этап 2.2
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 2.2.1
По правилу суммы производная по имеет вид .
Этап 2.2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.2.3
Объединим и .
Этап 2.2.2.4
Объединим и .
Этап 2.2.2.5
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 2.2.2.5.1
Вынесем множитель из .
Этап 2.2.2.5.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 2.2.2.5.2.1
Вынесем множитель из .
Этап 2.2.2.5.2.2
Сократим общий множитель.
Этап 2.2.2.5.2.3
Перепишем это выражение.
Этап 2.2.2.5.2.4
Разделим на .
Этап 2.2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3.3
Объединим и .
Этап 2.2.3.4
Объединим и .
Этап 2.3
Вторая производная по равна .
Этап 3
Приравняем вторую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 3.1
Пусть вторая производная равна .
Этап 3.2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Вынесем множитель из .
Этап 3.2.2
Вынесем множитель из .
Этап 3.2.3
Вынесем множитель из .
Этап 3.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.4.1
Приравняем к .
Этап 3.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.4.2.1
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 3.4.2.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.4.2.2.1
Перепишем в виде .
Этап 3.4.2.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 3.4.2.2.3
Плюс или минус равно .
Этап 3.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.5.1
Приравняем к .
Этап 3.5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.5.2.1
Вычтем из обеих частей уравнения.
Этап 3.5.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.5.2.2.1
Разделим каждый член на .
Этап 3.5.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.5.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.5.2.2.2.1.1
Сократим общий множитель.
Этап 3.5.2.2.2.1.2
Разделим на .
Этап 3.5.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.5.2.2.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 3.5.2.2.3.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 3.5.2.2.3.2.1
Умножим на .
Этап 3.5.2.2.3.2.2
Умножим на .
Этап 3.6
Окончательным решением являются все значения, при которых верно.
Этап 4
Найдем точки, в которых вторая производная равна .
Нажмите для увеличения количества этапов...
Этап 4.1
Подставим в , чтобы найти значение .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Заменим в этом выражении переменную на .
Этап 4.1.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1.1
Возведение в любую положительную степень дает .
Этап 4.1.2.1.2
Разделим на .
Этап 4.1.2.1.3
Возведение в любую положительную степень дает .
Этап 4.1.2.1.4
Разделим на .
Этап 4.1.2.2
Упростим путем добавления чисел.
Нажмите для увеличения количества этапов...
Этап 4.1.2.2.1
Добавим и .
Этап 4.1.2.2.2
Добавим и .
Этап 4.1.2.3
Окончательный ответ: .
Этап 4.2
Подставляя в , найдем точку . Эта точка может быть точкой перегиба.
Этап 4.3
Подставим в , чтобы найти значение .
Нажмите для увеличения количества этапов...
Этап 4.3.1
Заменим в этом выражении переменную на .
Этап 4.3.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1.1.1
Применим правило умножения к .
Этап 4.3.2.1.1.2
Возведем в степень .
Этап 4.3.2.1.1.3
Применим правило умножения к .
Этап 4.3.2.1.1.4
Возведем в степень .
Этап 4.3.2.1.1.5
Возведем в степень .
Этап 4.3.2.1.2
Умножим числитель на величину, обратную знаменателю.
Этап 4.3.2.1.3
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.3.2.1.3.1
Умножим на .
Этап 4.3.2.1.3.2
Умножим на .
Этап 4.3.2.1.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1.4.1
Применим правило умножения к .
Этап 4.3.2.1.4.2
Возведем в степень .
Этап 4.3.2.1.4.3
Применим правило умножения к .
Этап 4.3.2.1.4.4
Возведем в степень .
Этап 4.3.2.1.4.5
Возведем в степень .
Этап 4.3.2.1.4.6
Умножим на .
Этап 4.3.2.1.5
Умножим числитель на величину, обратную знаменателю.
Этап 4.3.2.1.6
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.3.2.1.6.1
Умножим на .
Этап 4.3.2.1.6.2
Умножим на .
Этап 4.3.2.2
Найдем общий знаменатель.
Нажмите для увеличения количества этапов...
Этап 4.3.2.2.1
Умножим на .
Этап 4.3.2.2.2
Умножим на .
Этап 4.3.2.2.3
Запишем в виде дроби со знаменателем .
Этап 4.3.2.2.4
Умножим на .
Этап 4.3.2.2.5
Умножим на .
Этап 4.3.2.2.6
Изменим порядок множителей в .
Этап 4.3.2.2.7
Умножим на .
Этап 4.3.2.3
Объединим числители над общим знаменателем.
Этап 4.3.2.4
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.3.2.4.1
Умножим на .
Этап 4.3.2.4.2
Умножим на .
Этап 4.3.2.5
Сократим выражение, путем отбрасывания общих множителей.
Нажмите для увеличения количества этапов...
Этап 4.3.2.5.1
Добавим и .
Этап 4.3.2.5.2
Добавим и .
Этап 4.3.2.5.3
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 4.3.2.5.3.1
Вынесем множитель из .
Этап 4.3.2.5.3.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 4.3.2.5.3.2.1
Вынесем множитель из .
Этап 4.3.2.5.3.2.2
Сократим общий множитель.
Этап 4.3.2.5.3.2.3
Перепишем это выражение.
Этап 4.3.2.6
Окончательный ответ: .
Этап 4.4
Подставляя в , найдем точку . Эта точка может быть точкой перегиба.
Этап 4.5
Определим точки, которые могут быть точками перегиба.
Этап 5
Разобьем на интервалы вокруг точек, которые могут быть точками перегиба.
Этап 6
Подставим значение из интервала во вторую производную, чтобы определить, возрастает она или убывает.
Нажмите для увеличения количества этапов...
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.2.1.1
Возведем в степень .
Этап 6.2.1.2
Умножим на .
Этап 6.2.1.3
Возведем в степень .
Этап 6.2.1.4
Умножим на .
Этап 6.2.1.5
Разделим на .
Этап 6.2.2
Добавим и .
Этап 6.2.3
Окончательный ответ: .
Этап 6.3
При вторая производная имеет вид . Поскольку это отрицательная величина, вторая производная уменьшается на интервале .
Убывание на , так как
Убывание на , так как
Этап 7
Подставим значение из интервала во вторую производную, чтобы определить, возрастает она или убывает.
Нажмите для увеличения количества этапов...
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 7.2.1.1
Возведем в степень .
Этап 7.2.1.2
Умножим на .
Этап 7.2.1.3
Возведем в степень .
Этап 7.2.1.4
Умножим на .
Этап 7.2.1.5
Разделим на .
Этап 7.2.2
Добавим и .
Этап 7.2.3
Окончательный ответ: .
Этап 7.3
При вторая производная имеет вид . Поскольку это положительная величина, вторая производная возрастает на интервале .
Возрастание в области , так как
Возрастание в области , так как
Этап 8
Подставим значение из интервала во вторую производную, чтобы определить, возрастает она или убывает.
Нажмите для увеличения количества этапов...
Этап 8.1
Заменим в этом выражении переменную на .
Этап 8.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 8.2.1.1
Возведем в степень .
Этап 8.2.1.2
Умножим на .
Этап 8.2.1.3
Возведем в степень .
Этап 8.2.1.4
Умножим на .
Этап 8.2.1.5
Разделим на .
Этап 8.2.2
Добавим и .
Этап 8.2.3
Окончательный ответ: .
Этап 8.3
При вторая производная имеет вид . Поскольку это положительная величина, вторая производная возрастает на интервале .
Возрастание в области , так как
Возрастание в области , так как
Этап 9
Точка перегиба — это точка на кривой, в которой вогнутость меняет знак с плюса на минус или с минуса на плюс. В этом случае точкой перегиба является точка .
Этап 10