Математический анализ Примеры

Найти интервалы убывания и возрастания с помощью производных 2x-2cos(x)
Этап 1
Запишем в виде функции.
Этап 2
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 2.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 2.1.1
По правилу суммы производная по имеет вид .
Этап 2.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.2.3
Умножим на .
Этап 2.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.3.2
Производная по равна .
Этап 2.1.3.3
Умножим на .
Этап 2.2
Первая производная по равна .
Этап 3
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 3.1
Пусть первая производная равна .
Этап 3.2
Вычтем из обеих частей уравнения.
Этап 3.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Разделим каждый член на .
Этап 3.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.1
Сократим общий множитель.
Этап 3.3.2.1.2
Разделим на .
Этап 3.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.3.1
Разделим на .
Этап 3.4
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 3.5
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.5.1
Точное значение : .
Этап 3.6
Функция синуса отрицательна в третьем и четвертом квадрантах. Для нахождения второго решения вычтем решение из , чтобы найти угол приведения. Затем добавим этот угол приведения к и найдем решение в третьем квадранте.
Этап 3.7
Упростим выражение, чтобы найти второе решение.
Нажмите для увеличения количества этапов...
Этап 3.7.1
Вычтем из .
Этап 3.7.2
Результирующий угол является положительным, меньшим и отличается от на полный оборот.
Этап 3.8
Найдем период .
Нажмите для увеличения количества этапов...
Этап 3.8.1
Период функции можно вычислить по формуле .
Этап 3.8.2
Заменим на в формуле периода.
Этап 3.8.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 3.8.4
Разделим на .
Этап 3.9
Добавим к каждому отрицательному углу, чтобы получить положительные углы.
Нажмите для увеличения количества этапов...
Этап 3.9.1
Добавим к , чтобы найти положительный угол.
Этап 3.9.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.9.3
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 3.9.3.1
Объединим и .
Этап 3.9.3.2
Объединим числители над общим знаменателем.
Этап 3.9.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 3.9.4.1
Умножим на .
Этап 3.9.4.2
Вычтем из .
Этап 3.9.5
Перечислим новые углы.
Этап 3.10
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
Этап 3.11
Объединим ответы.
, для любого целого
, для любого целого
Этап 4
Значения, при которых производная равна : .
Этап 5
Найдя точку, в которой производная равна или не определена, проверим возрастание и убывание в интервале .
Этап 6
Подставим значение из интервала в производную, чтобы определить, возрастает функция или убывает.
Нажмите для увеличения количества этапов...
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Окончательный ответ: .
Этап 6.3
Упростим.
Этап 6.4
При производная имеет вид . Поскольку это отрицательная величина, функция убывает в диапазоне .
Убывание на , так как
Убывание на , так как
Этап 7
Подставим значение из интервала в производную, чтобы определить, возрастает функция или убывает.
Нажмите для увеличения количества этапов...
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Окончательный ответ: .
Этап 7.3
Упростим.
Этап 7.4
При производная имеет вид . Поскольку это положительная величина, функция возрастает в диапазоне .
Возрастание в области , так как
Возрастание в области , так как
Этап 8
Перечислим интервалы, на которых функция возрастает и убывает.
Возрастание в области:
Убывание на:
Этап 9