Введите задачу...
Математический анализ Примеры
Этап 1
По правилу суммы производная по имеет вид .
Этап 2
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
По правилу суммы производная по имеет вид .
Этап 2.3
Поскольку является константой относительно , производная по равна .
Этап 2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.5
Поскольку является константой относительно , производная по равна .
Этап 2.6
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.6.1
Чтобы применить цепное правило, зададим как .
Этап 2.6.2
Производная по равна .
Этап 2.6.3
Заменим все вхождения на .
Этап 2.7
Поскольку является константой относительно , производная по равна .
Этап 2.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.9
Умножим на .
Этап 2.10
Умножим на обратную дробь, чтобы разделить на .
Этап 2.11
Умножим на .
Этап 2.12
Умножим на .
Этап 2.13
Умножим на .
Этап 2.14
Перенесем влево от .
Этап 2.15
Сократим общий множитель .
Этап 2.15.1
Сократим общий множитель.
Этап 2.15.2
Перепишем это выражение.
Этап 3
Поскольку является константой относительно , производная относительно равна .
Этап 4
Этап 4.1
Применим свойство дистрибутивности.
Этап 4.2
Объединим термины.
Этап 4.2.1
Объединим и .
Этап 4.2.2
Сократим общий множитель и .
Этап 4.2.2.1
Вынесем множитель из .
Этап 4.2.2.2
Сократим общие множители.
Этап 4.2.2.2.1
Вынесем множитель из .
Этап 4.2.2.2.2
Сократим общий множитель.
Этап 4.2.2.2.3
Перепишем это выражение.
Этап 4.2.3
Умножим на .
Этап 4.2.4
Объединим и .
Этап 4.2.5
Вынесем знак минуса перед дробью.
Этап 4.2.6
Добавим и .
Этап 4.3
Изменим порядок членов.