Математический анализ Примеры

Trovare la Derivata - d/d@VAR f(x)=3x^4 натуральный логарифм от (x)^2
Этап 1
Поскольку является константой относительно , производная по равна .
Этап 2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.1
Чтобы применить цепное правило, зададим как .
Этап 3.2
Производная по равна .
Этап 3.3
Заменим все вхождения на .
Этап 4
Продифференцируем, используя правило степени.
Нажмите для увеличения количества этапов...
Этап 4.1
Объединим и .
Этап 4.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Вынесем множитель из .
Этап 4.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Умножим на .
Этап 4.2.2.2
Сократим общий множитель.
Этап 4.2.2.3
Перепишем это выражение.
Этап 4.2.2.4
Разделим на .
Этап 4.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 5.1
Перенесем .
Этап 5.2
Умножим на .
Нажмите для увеличения количества этапов...
Этап 5.2.1
Возведем в степень .
Этап 5.2.2
Применим правило степени для объединения показателей.
Этап 5.3
Добавим и .
Этап 6
Перенесем влево от .
Этап 7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 8
Упростим.
Нажмите для увеличения количества этапов...
Этап 8.1
Применим свойство дистрибутивности.
Этап 8.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Умножим на .
Этап 8.2.2
Умножим на .
Этап 8.3
Изменим порядок членов.