Введите задачу...
Математический анализ Примеры
Этап 1
Поскольку является константой относительно , производная по равна .
Этап 2
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Заменим все вхождения на .
Этап 3
Этап 3.1
Умножим на .
Этап 3.2
По правилу суммы производная по имеет вид .
Этап 3.3
Поскольку является константой относительно , производная по равна .
Этап 3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.5
Умножим на .
Этап 3.6
Поскольку является константой относительно , производная относительно равна .
Этап 3.7
Упростим выражение.
Этап 3.7.1
Добавим и .
Этап 3.7.2
Умножим на .
Этап 4
Этап 4.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 4.2
Упростим знаменатель.
Этап 4.2.1
Вынесем множитель из .
Этап 4.2.1.1
Вынесем множитель из .
Этап 4.2.1.2
Вынесем множитель из .
Этап 4.2.1.3
Вынесем множитель из .
Этап 4.2.2
Применим правило умножения к .
Этап 4.2.3
Возведем в степень .
Этап 4.3
Сократим общий множитель .
Этап 4.3.1
Вынесем множитель из .
Этап 4.3.2
Вынесем множитель из .
Этап 4.3.3
Сократим общий множитель.
Этап 4.3.4
Перепишем это выражение.
Этап 4.4
Объединим и .