Математический анализ Примеры

Trovare la Derivata - d/d@VAR f(x)=3+3x+1/2x^2+5/6x^3+1/24x^4+1/120x^5
Этап 1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Поскольку является константой относительно , производная относительно равна .
Этап 2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Умножим на .
Этап 3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.1
Поскольку является константой относительно , производная по равна .
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Объединим и .
Этап 3.4
Объединим и .
Этап 3.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.5.1
Сократим общий множитель.
Этап 3.5.2
Разделим на .
Этап 4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 4.1
Поскольку является константой относительно , производная по равна .
Этап 4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3
Объединим и .
Этап 4.4
Умножим на .
Этап 4.5
Объединим и .
Этап 4.6
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 4.6.1
Вынесем множитель из .
Этап 4.6.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 4.6.2.1
Вынесем множитель из .
Этап 4.6.2.2
Сократим общий множитель.
Этап 4.6.2.3
Перепишем это выражение.
Этап 5
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 5.1
Поскольку является константой относительно , производная по равна .
Этап 5.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.3
Объединим и .
Этап 5.4
Объединим и .
Этап 5.5
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 5.5.1
Вынесем множитель из .
Этап 5.5.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 5.5.2.1
Вынесем множитель из .
Этап 5.5.2.2
Сократим общий множитель.
Этап 5.5.2.3
Перепишем это выражение.
Этап 6
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 6.1
Поскольку является константой относительно , производная по равна .
Этап 6.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 6.3
Объединим и .
Этап 6.4
Объединим и .
Этап 6.5
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 6.5.1
Вынесем множитель из .
Этап 6.5.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 6.5.2.1
Вынесем множитель из .
Этап 6.5.2.2
Сократим общий множитель.
Этап 6.5.2.3
Перепишем это выражение.
Этап 7
Упростим.
Нажмите для увеличения количества этапов...
Этап 7.1
Добавим и .
Этап 7.2
Изменим порядок членов.