Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Возведем в степень .
Этап 1.2
Упростим выражение.
Этап 1.2.1
Умножим на .
Этап 1.2.2
Вычтем из .
Этап 1.3
Поскольку является константой относительно , производная по равна .
Этап 2
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 3
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Поскольку является константой относительно , производная по равна .
Этап 3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4
Умножим на .
Этап 3.5
Поскольку является константой относительно , производная относительно равна .
Этап 3.6
Упростим выражение.
Этап 3.6.1
Добавим и .
Этап 3.6.2
Перенесем влево от .
Этап 3.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.8
Объединим дроби.
Этап 3.8.1
Умножим на .
Этап 3.8.2
Умножим на .
Этап 4
Этап 4.1
Применим свойство дистрибутивности.
Этап 4.2
Упростим числитель.
Этап 4.2.1
Упростим каждый член.
Этап 4.2.1.1
Умножим на .
Этап 4.2.1.2
Умножим на .
Этап 4.2.2
Вычтем из .
Этап 4.2.3
Добавим и .
Этап 4.3
Вынесем множитель из .
Этап 4.4
Вынесем множитель из .
Этап 4.5
Разделим дроби.
Этап 4.6
Разделим на .
Этап 4.7
Объединим и .