Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Умножим на .
Этап 1.2
Поскольку является константой относительно , производная по равна .
Этап 1.3
Перепишем в виде .
Этап 2
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Заменим все вхождения на .
Этап 3
Этап 3.1
Умножим на .
Этап 3.2
По правилу суммы производная по имеет вид .
Этап 3.3
Поскольку является константой относительно , производная относительно равна .
Этап 3.4
Добавим и .
Этап 3.5
Поскольку является константой относительно , производная по равна .
Этап 3.6
Умножим на .
Этап 4
Этап 4.1
Чтобы применить цепное правило, зададим как .
Этап 4.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 4.3
Заменим все вхождения на .
Этап 5
Этап 5.1
Поскольку является константой относительно , производная по равна .
Этап 5.2
Умножим на .
Этап 5.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.4
Умножим на .
Этап 6
Этап 6.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 6.2
Объединим термины.
Этап 6.2.1
Объединим и .
Этап 6.2.2
Объединим и .
Этап 6.3
Изменим порядок членов.
Этап 6.4
Упростим знаменатель.
Этап 6.4.1
Вынесем множитель из .
Этап 6.4.1.1
Вынесем множитель из .
Этап 6.4.1.2
Вынесем множитель из .
Этап 6.4.1.3
Вынесем множитель из .
Этап 6.4.2
Применим правило умножения к .
Этап 6.4.3
Возведем в степень .
Этап 6.5
Вынесем множитель из .
Этап 6.6
Вынесем множитель из .
Этап 6.7
Разделим дроби.
Этап 6.8
Разделим на .
Этап 6.9
Объединим и .