Введите задачу...
Математический анализ Примеры
Этап 1
По правилу суммы производная по имеет вид .
Этап 2
Этап 2.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.2
Производная по равна .
Этап 2.2.3
Заменим все вхождения на .
Этап 2.3
По правилу суммы производная по имеет вид .
Этап 2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.5
Поскольку является константой относительно , производная относительно равна .
Этап 2.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.7
Добавим и .
Этап 2.8
Умножим на .
Этап 2.9
Объединим и .
Этап 2.10
Умножим на .
Этап 2.11
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.12
Объединим числители над общим знаменателем.
Этап 2.13
Для перемножения модулей следует перемножить члены внутри каждого модуля.
Этап 2.14
Возведем в степень .
Этап 2.15
Возведем в степень .
Этап 2.16
Применим правило степени для объединения показателей.
Этап 2.17
Добавим и .
Этап 3
Этап 3.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2
Поскольку является константой относительно , производная относительно равна .
Этап 4
Этап 4.1
Применим свойство дистрибутивности.
Этап 4.2
Объединим термины.
Этап 4.2.1
Возведем в степень .
Этап 4.2.2
Возведем в степень .
Этап 4.2.3
Применим правило степени для объединения показателей.
Этап 4.2.4
Добавим и .
Этап 4.2.5
Перенесем влево от .
Этап 4.2.6
Перепишем в виде .
Этап 4.2.7
Запишем в виде дроби с общим знаменателем.
Этап 4.2.8
Объединим числители над общим знаменателем.
Этап 4.2.9
Добавим и .