Математический анализ Примеры

Этап 1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.3
Заменим все вхождения на .
Этап 3
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 4
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 4.1
Перепишем в виде .
Этап 4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3
Умножим.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Умножим на .
Этап 4.3.2
Умножим на .
Этап 4.4
Поскольку является константой относительно , производная относительно равна .
Этап 4.5
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 4.5.1
Умножим на .
Этап 4.5.2
Добавим и .
Этап 5
Возведем в степень .
Этап 6
Применим правило степени для объединения показателей.
Этап 7
Добавим и .
Этап 8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 9
Умножим на .
Этап 10
Упростим.
Нажмите для увеличения количества этапов...
Этап 10.1
Изменим порядок членов.
Этап 10.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 10.2.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 10.2.2
Объединим и .