Математический анализ Примеры

Найти локальный максимум и минимум f(x)=(x^2)/(3x-2)+5x
Этап 1
Найдем первую производную функции.
Нажмите для увеличения количества этапов...
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3
По правилу суммы производная по имеет вид .
Этап 1.2.4
Поскольку является константой относительно , производная по равна .
Этап 1.2.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.6
Поскольку является константой относительно , производная относительно равна .
Этап 1.2.7
Перенесем влево от .
Этап 1.2.8
Умножим на .
Этап 1.2.9
Добавим и .
Этап 1.2.10
Умножим на .
Этап 1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3
Умножим на .
Этап 1.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Применим свойство дистрибутивности.
Этап 1.4.2
Применим свойство дистрибутивности.
Этап 1.4.3
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 1.4.3.1
Умножим на .
Этап 1.4.3.2
Возведем в степень .
Этап 1.4.3.3
Возведем в степень .
Этап 1.4.3.4
Применим правило степени для объединения показателей.
Этап 1.4.3.5
Добавим и .
Этап 1.4.3.6
Умножим на .
Этап 1.4.3.7
Вычтем из .
Этап 1.4.3.8
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.4.3.9
Объединим числители над общим знаменателем.
Этап 1.4.4
Изменим порядок членов.
Этап 1.4.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.4.5.1
Перепишем в виде .
Этап 1.4.5.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 1.4.5.2.1
Применим свойство дистрибутивности.
Этап 1.4.5.2.2
Применим свойство дистрибутивности.
Этап 1.4.5.2.3
Применим свойство дистрибутивности.
Этап 1.4.5.3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 1.4.5.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.4.5.3.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 1.4.5.3.1.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.4.5.3.1.2.1
Перенесем .
Этап 1.4.5.3.1.2.2
Умножим на .
Этап 1.4.5.3.1.3
Умножим на .
Этап 1.4.5.3.1.4
Умножим на .
Этап 1.4.5.3.1.5
Умножим на .
Этап 1.4.5.3.1.6
Умножим на .
Этап 1.4.5.3.2
Вычтем из .
Этап 1.4.5.4
Применим свойство дистрибутивности.
Этап 1.4.5.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.5.5.1
Умножим на .
Этап 1.4.5.5.2
Умножим на .
Этап 1.4.5.5.3
Умножим на .
Этап 1.4.5.6
Добавим и .
Этап 1.4.5.7
Вычтем из .
Этап 1.4.5.8
Перепишем в разложенном на множители виде.
Нажмите для увеличения количества этапов...
Этап 1.4.5.8.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.4.5.8.1.1
Вынесем множитель из .
Этап 1.4.5.8.1.2
Вынесем множитель из .
Этап 1.4.5.8.1.3
Вынесем множитель из .
Этап 1.4.5.8.1.4
Вынесем множитель из .
Этап 1.4.5.8.1.5
Вынесем множитель из .
Этап 1.4.5.8.2
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 1.4.5.8.2.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 1.4.5.8.2.1.1
Вынесем множитель из .
Этап 1.4.5.8.2.1.2
Запишем как плюс
Этап 1.4.5.8.2.1.3
Применим свойство дистрибутивности.
Этап 1.4.5.8.2.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 1.4.5.8.2.2.1
Сгруппируем первые два члена и последние два члена.
Этап 1.4.5.8.2.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 1.4.5.8.2.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 2
Найдем вторую производную функции.
Нажмите для увеличения количества этапов...
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 2.3
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Применим правило степени и перемножим показатели, .
Этап 2.3.2
Умножим на .
Этап 2.4
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.5
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.5.1
По правилу суммы производная по имеет вид .
Этап 2.5.2
Поскольку является константой относительно , производная по равна .
Этап 2.5.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.5.4
Умножим на .
Этап 2.5.5
Поскольку является константой относительно , производная относительно равна .
Этап 2.5.6
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.5.6.1
Добавим и .
Этап 2.5.6.2
Перенесем влево от .
Этап 2.5.7
По правилу суммы производная по имеет вид .
Этап 2.5.8
Поскольку является константой относительно , производная по равна .
Этап 2.5.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.5.10
Умножим на .
Этап 2.5.11
Поскольку является константой относительно , производная относительно равна .
Этап 2.5.12
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.5.12.1
Добавим и .
Этап 2.5.12.2
Перенесем влево от .
Этап 2.6
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.6.1
Чтобы применить цепное правило, зададим как .
Этап 2.6.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.6.3
Заменим все вхождения на .
Этап 2.7
Упростим с помощью разложения.
Нажмите для увеличения количества этапов...
Этап 2.7.1
Умножим на .
Этап 2.7.2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.7.2.1
Вынесем множитель из .
Этап 2.7.2.2
Вынесем множитель из .
Этап 2.7.2.3
Вынесем множитель из .
Этап 2.8
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 2.8.1
Вынесем множитель из .
Этап 2.8.2
Сократим общий множитель.
Этап 2.8.3
Перепишем это выражение.
Этап 2.9
По правилу суммы производная по имеет вид .
Этап 2.10
Поскольку является константой относительно , производная по равна .
Этап 2.11
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.12
Умножим на .
Этап 2.13
Поскольку является константой относительно , производная относительно равна .
Этап 2.14
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 2.14.1
Добавим и .
Этап 2.14.2
Умножим на .
Этап 2.14.3
Объединим и .
Этап 2.15
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.15.1
Применим свойство дистрибутивности.
Этап 2.15.2
Применим свойство дистрибутивности.
Этап 2.15.3
Применим свойство дистрибутивности.
Этап 2.15.4
Применим свойство дистрибутивности.
Этап 2.15.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.15.5.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.15.5.1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.15.5.1.1.1
Умножим на .
Этап 2.15.5.1.1.2
Умножим на .
Этап 2.15.5.1.1.3
Умножим на .
Этап 2.15.5.1.1.4
Умножим на .
Этап 2.15.5.1.2
Добавим и .
Этап 2.15.5.1.3
Вычтем из .
Этап 2.15.5.1.4
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 2.15.5.1.4.1
Применим свойство дистрибутивности.
Этап 2.15.5.1.4.2
Применим свойство дистрибутивности.
Этап 2.15.5.1.4.3
Применим свойство дистрибутивности.
Этап 2.15.5.1.5
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 2.15.5.1.5.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.15.5.1.5.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 2.15.5.1.5.1.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.15.5.1.5.1.2.1
Перенесем .
Этап 2.15.5.1.5.1.2.2
Умножим на .
Этап 2.15.5.1.5.1.3
Умножим на .
Этап 2.15.5.1.5.1.4
Умножим на .
Этап 2.15.5.1.5.1.5
Умножим на .
Этап 2.15.5.1.5.1.6
Умножим на .
Этап 2.15.5.1.5.2
Вычтем из .
Этап 2.15.5.1.6
Применим свойство дистрибутивности.
Этап 2.15.5.1.7
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.15.5.1.7.1
Умножим на .
Этап 2.15.5.1.7.2
Умножим на .
Этап 2.15.5.1.7.3
Умножим на .
Этап 2.15.5.1.8
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.15.5.1.8.1
Умножим на .
Этап 2.15.5.1.8.2
Умножим на .
Этап 2.15.5.1.9
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 2.15.5.1.9.1
Применим свойство дистрибутивности.
Этап 2.15.5.1.9.2
Применим свойство дистрибутивности.
Этап 2.15.5.1.9.3
Применим свойство дистрибутивности.
Этап 2.15.5.1.10
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 2.15.5.1.10.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.15.5.1.10.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 2.15.5.1.10.1.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.15.5.1.10.1.2.1
Перенесем .
Этап 2.15.5.1.10.1.2.2
Умножим на .
Этап 2.15.5.1.10.1.3
Умножим на .
Этап 2.15.5.1.10.1.4
Умножим на .
Этап 2.15.5.1.10.1.5
Умножим на .
Этап 2.15.5.1.10.1.6
Умножим на .
Этап 2.15.5.1.10.2
Добавим и .
Этап 2.15.5.1.11
Применим свойство дистрибутивности.
Этап 2.15.5.1.12
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.15.5.1.12.1
Умножим на .
Этап 2.15.5.1.12.2
Умножим на .
Этап 2.15.5.1.12.3
Умножим на .
Этап 2.15.5.2
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 2.15.5.2.1
Вычтем из .
Этап 2.15.5.2.2
Добавим и .
Этап 2.15.5.2.3
Добавим и .
Этап 2.15.5.2.4
Добавим и .
Этап 2.15.5.3
Вычтем из .
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 4.1.1
По правилу суммы производная по имеет вид .
Этап 4.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 4.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.2.3
По правилу суммы производная по имеет вид .
Этап 4.1.2.4
Поскольку является константой относительно , производная по равна .
Этап 4.1.2.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.2.6
Поскольку является константой относительно , производная относительно равна .
Этап 4.1.2.7
Перенесем влево от .
Этап 4.1.2.8
Умножим на .
Этап 4.1.2.9
Добавим и .
Этап 4.1.2.10
Умножим на .
Этап 4.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 4.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.3.3
Умножим на .
Этап 4.1.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1.4.1
Применим свойство дистрибутивности.
Этап 4.1.4.2
Применим свойство дистрибутивности.
Этап 4.1.4.3
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 4.1.4.3.1
Умножим на .
Этап 4.1.4.3.2
Возведем в степень .
Этап 4.1.4.3.3
Возведем в степень .
Этап 4.1.4.3.4
Применим правило степени для объединения показателей.
Этап 4.1.4.3.5
Добавим и .
Этап 4.1.4.3.6
Умножим на .
Этап 4.1.4.3.7
Вычтем из .
Этап 4.1.4.3.8
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.1.4.3.9
Объединим числители над общим знаменателем.
Этап 4.1.4.4
Изменим порядок членов.
Этап 4.1.4.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.1.4.5.1
Перепишем в виде .
Этап 4.1.4.5.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 4.1.4.5.2.1
Применим свойство дистрибутивности.
Этап 4.1.4.5.2.2
Применим свойство дистрибутивности.
Этап 4.1.4.5.2.3
Применим свойство дистрибутивности.
Этап 4.1.4.5.3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 4.1.4.5.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.1.4.5.3.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 4.1.4.5.3.1.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 4.1.4.5.3.1.2.1
Перенесем .
Этап 4.1.4.5.3.1.2.2
Умножим на .
Этап 4.1.4.5.3.1.3
Умножим на .
Этап 4.1.4.5.3.1.4
Умножим на .
Этап 4.1.4.5.3.1.5
Умножим на .
Этап 4.1.4.5.3.1.6
Умножим на .
Этап 4.1.4.5.3.2
Вычтем из .
Этап 4.1.4.5.4
Применим свойство дистрибутивности.
Этап 4.1.4.5.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1.4.5.5.1
Умножим на .
Этап 4.1.4.5.5.2
Умножим на .
Этап 4.1.4.5.5.3
Умножим на .
Этап 4.1.4.5.6
Добавим и .
Этап 4.1.4.5.7
Вычтем из .
Этап 4.1.4.5.8
Перепишем в разложенном на множители виде.
Нажмите для увеличения количества этапов...
Этап 4.1.4.5.8.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 4.1.4.5.8.1.1
Вынесем множитель из .
Этап 4.1.4.5.8.1.2
Вынесем множитель из .
Этап 4.1.4.5.8.1.3
Вынесем множитель из .
Этап 4.1.4.5.8.1.4
Вынесем множитель из .
Этап 4.1.4.5.8.1.5
Вынесем множитель из .
Этап 4.1.4.5.8.2
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 4.1.4.5.8.2.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 4.1.4.5.8.2.1.1
Вынесем множитель из .
Этап 4.1.4.5.8.2.1.2
Запишем как плюс
Этап 4.1.4.5.8.2.1.3
Применим свойство дистрибутивности.
Этап 4.1.4.5.8.2.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 4.1.4.5.8.2.2.1
Сгруппируем первые два члена и последние два члена.
Этап 4.1.4.5.8.2.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 4.1.4.5.8.2.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 4.2
Первая производная по равна .
Этап 5
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 5.1
Пусть первая производная равна .
Этап 5.2
Приравняем числитель к нулю.
Этап 5.3
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 5.3.1
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5.3.2
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.3.2.1
Приравняем к .
Этап 5.3.2.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.3.2.2.1
Добавим к обеим частям уравнения.
Этап 5.3.2.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.3.2.2.2.1
Разделим каждый член на .
Этап 5.3.2.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.2.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.2.2.2.2.1.1
Сократим общий множитель.
Этап 5.3.2.2.2.2.1.2
Разделим на .
Этап 5.3.3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.3.3.1
Приравняем к .
Этап 5.3.3.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.3.3.2.1
Добавим к обеим частям уравнения.
Этап 5.3.3.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.3.3.2.2.1
Разделим каждый член на .
Этап 5.3.3.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.3.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.3.2.2.2.1.1
Сократим общий множитель.
Этап 5.3.3.2.2.2.1.2
Разделим на .
Этап 5.3.4
Окончательным решением являются все значения, при которых верно.
Этап 6
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 6.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 6.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.2.1
Приравняем к .
Этап 6.2.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Добавим к обеим частям уравнения.
Этап 6.2.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 6.2.2.2.1
Разделим каждый член на .
Этап 6.2.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.2.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.2.2.2.2.1.1
Сократим общий множитель.
Этап 6.2.2.2.2.1.2
Разделим на .
Этап 7
Критические точки, которые необходимо вычислить.
Этап 8
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 9
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 9.1
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 9.1.1
Объединим и .
Этап 9.1.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 9.1.3
Объединим и .
Этап 9.1.4
Объединим числители над общим знаменателем.
Этап 9.1.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 9.1.5.1
Умножим на .
Этап 9.1.5.2
Вычтем из .
Этап 9.1.6
Вынесем знак минуса перед дробью.
Этап 9.1.7
Применим правило умножения к .
Этап 9.1.8
Возведем в степень .
Этап 9.1.9
Применим правило умножения к .
Этап 9.1.10
Единица в любой степени равна единице.
Этап 9.1.11
Возведем в степень .
Этап 9.2
Умножим числитель на величину, обратную знаменателю.
Этап 9.3
Умножим .
Нажмите для увеличения количества этапов...
Этап 9.3.1
Умножим на .
Этап 9.3.2
Умножим на .
Этап 10
 — локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
 — локальный максимум
Этап 11
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 11.1
Заменим в этом выражении переменную на .
Этап 11.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 11.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 11.2.1.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 11.2.1.1.1
Применим правило умножения к .
Этап 11.2.1.1.2
Единица в любой степени равна единице.
Этап 11.2.1.1.3
Возведем в степень .
Этап 11.2.1.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 11.2.1.2.1
Объединим и .
Этап 11.2.1.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 11.2.1.2.3
Объединим и .
Этап 11.2.1.2.4
Объединим числители над общим знаменателем.
Этап 11.2.1.2.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 11.2.1.2.5.1
Умножим на .
Этап 11.2.1.2.5.2
Вычтем из .
Этап 11.2.1.2.6
Вынесем знак минуса перед дробью.
Этап 11.2.1.3
Умножим числитель на величину, обратную знаменателю.
Этап 11.2.1.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 11.2.1.4.1
Вынесем множитель из .
Этап 11.2.1.4.2
Вынесем множитель из .
Этап 11.2.1.4.3
Сократим общий множитель.
Этап 11.2.1.4.4
Перепишем это выражение.
Этап 11.2.1.5
Объединим и .
Этап 11.2.1.6
Вынесем знак минуса перед дробью.
Этап 11.2.1.7
Объединим и .
Этап 11.2.2
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 11.2.2.1
Объединим числители над общим знаменателем.
Этап 11.2.2.2
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 11.2.2.2.1
Добавим и .
Этап 11.2.2.2.2
Разделим на .
Этап 11.2.3
Окончательный ответ: .
Этап 12
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 13
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 13.1
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 13.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 13.1.1.1
Вынесем множитель из .
Этап 13.1.1.2
Сократим общий множитель.
Этап 13.1.1.3
Перепишем это выражение.
Этап 13.1.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 13.1.3
Объединим и .
Этап 13.1.4
Объединим числители над общим знаменателем.
Этап 13.1.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 13.1.5.1
Умножим на .
Этап 13.1.5.2
Вычтем из .
Этап 13.1.6
Применим правило умножения к .
Этап 13.1.7
Единица в любой степени равна единице.
Этап 13.1.8
Возведем в степень .
Этап 13.2
Умножим числитель на величину, обратную знаменателю.
Этап 13.3
Умножим на .
Этап 14
 — локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
 — локальный минимум
Этап 15
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 15.1
Заменим в этом выражении переменную на .
Этап 15.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 15.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 15.2.1.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 15.2.1.1.1
Применим правило умножения к .
Этап 15.2.1.1.2
Возведем в степень .
Этап 15.2.1.1.3
Возведем в степень .
Этап 15.2.1.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 15.2.1.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 15.2.1.2.1.1
Вынесем множитель из .
Этап 15.2.1.2.1.2
Сократим общий множитель.
Этап 15.2.1.2.1.3
Перепишем это выражение.
Этап 15.2.1.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 15.2.1.2.3
Объединим и .
Этап 15.2.1.2.4
Объединим числители над общим знаменателем.
Этап 15.2.1.2.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 15.2.1.2.5.1
Умножим на .
Этап 15.2.1.2.5.2
Вычтем из .
Этап 15.2.1.3
Умножим числитель на величину, обратную знаменателю.
Этап 15.2.1.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 15.2.1.4.1
Вынесем множитель из .
Этап 15.2.1.4.2
Сократим общий множитель.
Этап 15.2.1.4.3
Перепишем это выражение.
Этап 15.2.1.5
Умножим .
Нажмите для увеличения количества этапов...
Этап 15.2.1.5.1
Объединим и .
Этап 15.2.1.5.2
Умножим на .
Этап 15.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 15.2.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 15.2.3.1
Умножим на .
Этап 15.2.3.2
Умножим на .
Этап 15.2.4
Объединим числители над общим знаменателем.
Этап 15.2.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 15.2.5.1
Умножим на .
Этап 15.2.5.2
Добавим и .
Этап 15.2.6
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 15.2.6.1
Вынесем множитель из .
Этап 15.2.6.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 15.2.6.2.1
Вынесем множитель из .
Этап 15.2.6.2.2
Сократим общий множитель.
Этап 15.2.6.2.3
Перепишем это выражение.
Этап 15.2.7
Окончательный ответ: .
Этап 16
Это локальные экстремумы .
 — локальный максимум
 — локальный минимум
Этап 17