Математический анализ Примеры

Найти локальный максимум и минимум f(x)=x-b натуральный логарифм от x
Этап 1
Найдем первую производную функции.
Нажмите для увеличения количества этапов...
Этап 1.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.2
Производная по равна .
Этап 1.2.3
Объединим и .
Этап 2
Найдем вторую производную функции.
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.1.1
По правилу суммы производная по имеет вид .
Этап 2.1.2
Поскольку является константой относительно , производная относительно равна .
Этап 2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Перепишем в виде .
Этап 2.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.4
Умножим на .
Этап 2.2.5
Умножим на .
Этап 2.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 2.3.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Объединим и .
Этап 2.3.2.2
Добавим и .
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 4.1.1.1
По правилу суммы производная по имеет вид .
Этап 4.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.2.2
Производная по равна .
Этап 4.1.2.3
Объединим и .
Этап 4.2
Первая производная по равна .
Этап 5
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 5.1
Пусть первая производная равна .
Этап 5.2
Вычтем из обеих частей уравнения.
Этап 5.3
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 5.3.2
НОК единицы и любого выражения есть это выражение.
Этап 5.4
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 5.4.1
Умножим каждый член на .
Этап 5.4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.4.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.4.2.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 5.4.2.1.2
Сократим общий множитель.
Этап 5.4.2.1.3
Перепишем это выражение.
Этап 5.5
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 5.5.1
Перепишем уравнение в виде .
Этап 5.5.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.5.2.1
Разделим каждый член на .
Этап 5.5.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.5.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 5.5.2.2.2
Разделим на .
Этап 5.5.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.5.2.3.1
Деление двух отрицательных значений дает положительное значение.
Этап 5.5.2.3.2
Разделим на .
Этап 6
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 6.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 6.2
Уравнение не определено, если знаменатель равен , аргумент под знаком квадратного корня меньше или аргумент под знаком логарифма меньше или равен .
Этап 7
Критические точки, которые необходимо вычислить.
Этап 8
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 9
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 9.1
Возведем в степень .
Этап 9.2
Вынесем множитель из .
Этап 9.3
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 9.3.1
Вынесем множитель из .
Этап 9.3.2
Сократим общий множитель.
Этап 9.3.3
Перепишем это выражение.
Этап 10
Так как первая производная не изменила знак, локальные экстремумы отсутствуют.
Нет локальных экстремумов
Этап 11