Математический анализ Примеры

Найти локальный максимум и минимум f(x)=xsin(x)+cos(x)
Этап 1
Найдем первую производную функции.
Нажмите для увеличения количества этапов...
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.2.2
Производная по равна .
Этап 1.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.4
Умножим на .
Этап 1.3
Производная по равна .
Этап 1.4
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Вычтем из .
Этап 1.4.2
Добавим и .
Этап 2
Найдем вторую производную функции.
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.2
Производная по равна .
Этап 2.3
Продифференцируем, используя правило степени.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.2
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Умножим на .
Этап 2.3.2.2
Изменим порядок членов.
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5
Приравняем к .
Этап 6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Приравняем к .
Этап 6.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.2.1
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 6.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Точное значение : .
Этап 6.2.3
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 6.2.4
Упростим .
Нажмите для увеличения количества этапов...
Этап 6.2.4.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.2.4.2
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 6.2.4.2.1
Объединим и .
Этап 6.2.4.2.2
Объединим числители над общим знаменателем.
Этап 6.2.4.3
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 6.2.4.3.1
Умножим на .
Этап 6.2.4.3.2
Вычтем из .
Этап 6.2.5
Решение уравнения .
Этап 7
Окончательным решением являются все значения, при которых верно.
Этап 8
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 9
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 9.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 9.1.1
Точное значение : .
Этап 9.1.2
Умножим на .
Этап 9.1.3
Точное значение : .
Этап 9.2
Добавим и .
Этап 10
 — локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
 — локальный минимум
Этап 11
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 11.1
Заменим в этом выражении переменную на .
Этап 11.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 11.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 11.2.1.1
Точное значение : .
Этап 11.2.1.2
Умножим на .
Этап 11.2.1.3
Точное значение : .
Этап 11.2.2
Добавим и .
Этап 11.2.3
Окончательный ответ: .
Этап 12
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 13
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 13.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 13.1.1
Точное значение : .
Этап 13.1.2
Умножим на .
Этап 13.1.3
Точное значение : .
Этап 13.2
Добавим и .
Этап 14
 — локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
 — локальный максимум
Этап 15
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 15.1
Заменим в этом выражении переменную на .
Этап 15.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 15.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 15.2.1.1
Точное значение : .
Этап 15.2.1.2
Умножим на .
Этап 15.2.1.3
Точное значение : .
Этап 15.2.2
Добавим и .
Этап 15.2.3
Окончательный ответ: .
Этап 16
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 17
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 17.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 17.1.1
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как синус отрицательный в четвертом квадранте.
Этап 17.1.2
Точное значение : .
Этап 17.1.3
Умножим на .
Этап 17.1.4
Умножим .
Нажмите для увеличения количества этапов...
Этап 17.1.4.1
Умножим на .
Этап 17.1.4.2
Умножим на .
Этап 17.1.5
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 17.1.6
Точное значение : .
Этап 17.2
Добавим и .
Этап 18
 — локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
 — локальный минимум
Этап 19
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 19.1
Заменим в этом выражении переменную на .
Этап 19.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 19.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 19.2.1.1
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как синус отрицательный в четвертом квадранте.
Этап 19.2.1.2
Точное значение : .
Этап 19.2.1.3
Умножим на .
Этап 19.2.1.4
Умножим .
Нажмите для увеличения количества этапов...
Этап 19.2.1.4.1
Объединим и .
Этап 19.2.1.4.2
Умножим на .
Этап 19.2.1.5
Вынесем знак минуса перед дробью.
Этап 19.2.1.6
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 19.2.1.7
Точное значение : .
Этап 19.2.2
Добавим и .
Этап 19.2.3
Окончательный ответ: .
Этап 20
Это локальные экстремумы .
 — локальный минимум
 — локальный максимум
 — локальный минимум
Этап 21