Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Поскольку является константой относительно , производная по равна .
Этап 1.2
По правилу суммы производная по имеет вид .
Этап 1.3
Поскольку является константой относительно , производная по равна .
Этап 1.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.5
Умножим на .
Этап 1.6
Поскольку является константой относительно , производная по равна .
Этап 1.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.8
Умножим на .
Этап 1.9
Упростим.
Этап 1.9.1
Применим свойство дистрибутивности.
Этап 1.9.2
Перенесем влево от .
Этап 1.9.3
Изменим порядок членов.
Этап 2
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 2.3
Найдем значение .
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Умножим на .
Этап 2.4
Изменим порядок членов.
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Этап 4.1
Найдем первую производную.
Этап 4.1.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.2
По правилу суммы производная по имеет вид .
Этап 4.1.3
Поскольку является константой относительно , производная по равна .
Этап 4.1.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.5
Умножим на .
Этап 4.1.6
Поскольку является константой относительно , производная по равна .
Этап 4.1.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.8
Умножим на .
Этап 4.1.9
Упростим.
Этап 4.1.9.1
Применим свойство дистрибутивности.
Этап 4.1.9.2
Перенесем влево от .
Этап 4.1.9.3
Изменим порядок членов.
Этап 4.2
Первая производная по равна .
Этап 5
Этап 5.1
Пусть первая производная равна .
Этап 5.2
Вынесем множитель из .
Этап 5.2.1
Вынесем множитель из .
Этап 5.2.2
Вынесем множитель из .
Этап 5.2.3
Вынесем множитель из .
Этап 5.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5.4
Приравняем к .
Этап 5.5
Приравняем к , затем решим относительно .
Этап 5.5.1
Приравняем к .
Этап 5.5.2
Решим относительно .
Этап 5.5.2.1
Вычтем из обеих частей уравнения.
Этап 5.5.2.2
Разделим каждый член на и упростим.
Этап 5.5.2.2.1
Разделим каждый член на .
Этап 5.5.2.2.2
Упростим левую часть.
Этап 5.5.2.2.2.1
Сократим общий множитель .
Этап 5.5.2.2.2.1.1
Сократим общий множитель.
Этап 5.5.2.2.2.1.2
Разделим на .
Этап 5.5.2.2.3
Упростим правую часть.
Этап 5.5.2.2.3.1
Деление двух отрицательных значений дает положительное значение.
Этап 5.6
Окончательным решением являются все значения, при которых верно.
Этап 6
Этап 6.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 7
Критические точки, которые необходимо вычислить.
Этап 8
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 9
Этап 9.1
Умножим .
Этап 9.1.1
Умножим на .
Этап 9.1.2
Умножим на .
Этап 9.2
Добавим и .
Этап 10
Так как первая производная не изменила знак, локальные экстремумы отсутствуют.
Нет локальных экстремумов
Этап 11