Математический анализ Примеры

Найти локальный максимум и минимум p(x)=x^2(a-x)
Этап 1
Найдем первую производную функции.
Нажмите для увеличения количества этапов...
Этап 1.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.2.1
По правилу суммы производная по имеет вид .
Этап 1.2.2
Поскольку является константой относительно , производная относительно равна .
Этап 1.2.3
Добавим и .
Этап 1.2.4
Поскольку является константой относительно , производная по равна .
Этап 1.2.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.6
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.2.6.1
Умножим на .
Этап 1.2.6.2
Перенесем влево от .
Этап 1.2.6.3
Перепишем в виде .
Этап 1.2.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.8
Перенесем влево от .
Этап 1.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Применим свойство дистрибутивности.
Этап 1.3.2
Применим свойство дистрибутивности.
Этап 1.3.3
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 1.3.3.1
Умножим на .
Этап 1.3.3.2
Возведем в степень .
Этап 1.3.3.3
Возведем в степень .
Этап 1.3.3.4
Применим правило степени для объединения показателей.
Этап 1.3.3.5
Добавим и .
Этап 1.3.3.6
Вычтем из .
Этап 2
Найдем вторую производную функции.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Умножим на .
Этап 2.4
Изменим порядок членов.
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 4.1.2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
По правилу суммы производная по имеет вид .
Этап 4.1.2.2
Поскольку является константой относительно , производная относительно равна .
Этап 4.1.2.3
Добавим и .
Этап 4.1.2.4
Поскольку является константой относительно , производная по равна .
Этап 4.1.2.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.2.6
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 4.1.2.6.1
Умножим на .
Этап 4.1.2.6.2
Перенесем влево от .
Этап 4.1.2.6.3
Перепишем в виде .
Этап 4.1.2.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.2.8
Перенесем влево от .
Этап 4.1.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1.3.1
Применим свойство дистрибутивности.
Этап 4.1.3.2
Применим свойство дистрибутивности.
Этап 4.1.3.3
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 4.1.3.3.1
Умножим на .
Этап 4.1.3.3.2
Возведем в степень .
Этап 4.1.3.3.3
Возведем в степень .
Этап 4.1.3.3.4
Применим правило степени для объединения показателей.
Этап 4.1.3.3.5
Добавим и .
Этап 4.1.3.3.6
Вычтем из .
Этап 4.2
Первая производная по равна .
Этап 5
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 5.1
Пусть первая производная равна .
Этап 5.2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 5.2.1
Вынесем множитель из .
Этап 5.2.2
Вынесем множитель из .
Этап 5.2.3
Вынесем множитель из .
Этап 5.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5.4
Приравняем к .
Этап 5.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.5.1
Приравняем к .
Этап 5.5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.5.2.1
Вычтем из обеих частей уравнения.
Этап 5.5.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.5.2.2.1
Разделим каждый член на .
Этап 5.5.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.5.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.5.2.2.2.1.1
Сократим общий множитель.
Этап 5.5.2.2.2.1.2
Разделим на .
Этап 5.5.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.5.2.2.3.1
Деление двух отрицательных значений дает положительное значение.
Этап 5.6
Окончательным решением являются все значения, при которых верно.
Этап 6
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 6.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 7
Критические точки, которые необходимо вычислить.
Этап 8
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 9
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 9.1
Умножим на .
Этап 9.2
Добавим и .
Этап 10
Так как первая производная не изменила знак, локальные экстремумы отсутствуют.
Нет локальных экстремумов
Этап 11