Математический анализ Примеры

Найти локальный максимум и минимум r(t)=(3sin(t))i-5cos(3t)j+e^(-7t)k
Этап 1
Найдем первую производную функции.
Нажмите для увеличения количества этапов...
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.2
Производная по равна .
Этап 1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.3.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.2.2
Производная по равна .
Этап 1.3.2.3
Заменим все вхождения на .
Этап 1.3.3
Поскольку является константой относительно , производная по равна .
Этап 1.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.5
Умножим на .
Этап 1.3.6
Умножим на .
Этап 1.3.7
Умножим на .
Этап 1.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.4.1
Поскольку является константой относительно , производная по равна .
Этап 1.4.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.4.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.4.2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.4.2.3
Заменим все вхождения на .
Этап 1.4.3
Поскольку является константой относительно , производная по равна .
Этап 1.4.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.4.5
Умножим на .
Этап 1.4.6
Перенесем влево от .
Этап 1.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.5.1
Изменим порядок членов.
Этап 1.5.2
Изменим порядок множителей в .
Этап 2
Найдем вторую производную функции.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Производная по равна .
Этап 2.2.3
Умножим на .
Этап 2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.3.2.2
Производная по равна .
Этап 2.3.2.3
Заменим все вхождения на .
Этап 2.3.3
Поскольку является константой относительно , производная по равна .
Этап 2.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.5
Умножим на .
Этап 2.3.6
Перенесем влево от .
Этап 2.3.7
Умножим на .
Этап 2.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.4.1
Поскольку является константой относительно , производная по равна .
Этап 2.4.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.4.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.4.2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.4.2.3
Заменим все вхождения на .
Этап 2.4.3
Поскольку является константой относительно , производная по равна .
Этап 2.4.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.4.5
Умножим на .
Этап 2.4.6
Перенесем влево от .
Этап 2.4.7
Умножим на .
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 5
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 5.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.1.1
Точное значение : .
Этап 5.1.2
Умножим на .
Этап 5.1.3
Умножим на .
Этап 5.1.4
Умножим на .
Этап 5.1.5
Точное значение : .
Этап 5.1.6
Умножим на .
Этап 5.1.7
Умножим на .
Этап 5.1.8
Любое число в степени равно .
Этап 5.1.9
Умножим на .
Этап 5.2
Добавим и .
Этап 6
Так как первая производная не изменила знак, локальные экстремумы отсутствуют.
Нет локальных экстремумов
Этап 7