Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Этап 2.1
Перепишем в виде .
Этап 2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Заменим все вхождения на .
Этап 2.3
Продифференцируем.
Этап 2.3.1
По правилу суммы производная по имеет вид .
Этап 2.3.2
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.3
Добавим и .
Этап 2.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.5
Умножим на .
Этап 2.4
Упростим.
Этап 2.4.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 2.4.2
Объединим термины.
Этап 2.4.2.1
Объединим и .
Этап 2.4.2.2
Вынесем знак минуса перед дробью.
Этап 2.4.2.3
Объединим и .
Этап 2.4.2.4
Перенесем влево от .
Этап 3
Этап 3.1
Поскольку является константой относительно , производная по равна .
Этап 3.2
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 3.3
Продифференцируем, используя правило степени.
Этап 3.3.1
Перемножим экспоненты в .
Этап 3.3.1.1
Применим правило степени и перемножим показатели, .
Этап 3.3.1.2
Умножим на .
Этап 3.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.3
Умножим на .
Этап 3.4
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.4.1
Чтобы применить цепное правило, зададим как .
Этап 3.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4.3
Заменим все вхождения на .
Этап 3.5
Упростим с помощью разложения.
Этап 3.5.1
Умножим на .
Этап 3.5.2
Вынесем множитель из .
Этап 3.5.2.1
Вынесем множитель из .
Этап 3.5.2.2
Вынесем множитель из .
Этап 3.5.2.3
Вынесем множитель из .
Этап 3.6
Сократим общие множители.
Этап 3.6.1
Вынесем множитель из .
Этап 3.6.2
Сократим общий множитель.
Этап 3.6.3
Перепишем это выражение.
Этап 3.7
По правилу суммы производная по имеет вид .
Этап 3.8
Поскольку является константой относительно , производная относительно равна .
Этап 3.9
Добавим и .
Этап 3.10
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.11
Умножим на .
Этап 3.12
Возведем в степень .
Этап 3.13
Возведем в степень .
Этап 3.14
Применим правило степени для объединения показателей.
Этап 3.15
Добавим и .
Этап 3.16
Вычтем из .
Этап 3.17
Объединим и .
Этап 3.18
Вынесем знак минуса перед дробью.
Этап 3.19
Упростим.
Этап 3.19.1
Применим свойство дистрибутивности.
Этап 3.19.2
Упростим каждый член.
Этап 3.19.2.1
Умножим на .
Этап 3.19.2.2
Умножим на .
Этап 3.19.3
Вынесем множитель из .
Этап 3.19.3.1
Вынесем множитель из .
Этап 3.19.3.2
Вынесем множитель из .
Этап 3.19.3.3
Вынесем множитель из .
Этап 4
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 5
Этап 5.1
Найдем первую производную.
Этап 5.1.1
Перепишем в виде .
Этап 5.1.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 5.1.2.1
Чтобы применить цепное правило, зададим как .
Этап 5.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.2.3
Заменим все вхождения на .
Этап 5.1.3
Продифференцируем.
Этап 5.1.3.1
По правилу суммы производная по имеет вид .
Этап 5.1.3.2
Поскольку является константой относительно , производная относительно равна .
Этап 5.1.3.3
Добавим и .
Этап 5.1.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.3.5
Умножим на .
Этап 5.1.4
Упростим.
Этап 5.1.4.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 5.1.4.2
Объединим термины.
Этап 5.1.4.2.1
Объединим и .
Этап 5.1.4.2.2
Вынесем знак минуса перед дробью.
Этап 5.1.4.2.3
Объединим и .
Этап 5.1.4.2.4
Перенесем влево от .
Этап 5.2
Первая производная по равна .
Этап 6
Этап 6.1
Пусть первая производная равна .
Этап 6.2
Приравняем числитель к нулю.
Этап 6.3
Разделим каждый член на и упростим.
Этап 6.3.1
Разделим каждый член на .
Этап 6.3.2
Упростим левую часть.
Этап 6.3.2.1
Сократим общий множитель .
Этап 6.3.2.1.1
Сократим общий множитель.
Этап 6.3.2.1.2
Разделим на .
Этап 6.3.3
Упростим правую часть.
Этап 6.3.3.1
Разделим на .
Этап 7
Этап 7.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 8
Критические точки, которые необходимо вычислить.
Этап 9
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 10
Этап 10.1
Упростим числитель.
Этап 10.1.1
Возведение в любую положительную степень дает .
Этап 10.1.2
Умножим на .
Этап 10.1.3
Добавим и .
Этап 10.2
Упростим знаменатель.
Этап 10.2.1
Возведение в любую положительную степень дает .
Этап 10.2.2
Добавим и .
Этап 10.2.3
Единица в любой степени равна единице.
Этап 10.3
Упростим выражение.
Этап 10.3.1
Умножим на .
Этап 10.3.2
Разделим на .
Этап 10.3.3
Умножим на .
Этап 11
— локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
— локальный максимум
Этап 12
Этап 12.1
Заменим в этом выражении переменную на .
Этап 12.2
Упростим результат.
Этап 12.2.1
Упростим знаменатель.
Этап 12.2.1.1
Возведение в любую положительную степень дает .
Этап 12.2.1.2
Добавим и .
Этап 12.2.2
Разделим на .
Этап 12.2.3
Окончательный ответ: .
Этап 13
Это локальные экстремумы .
— локальный максимум
Этап 14