Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 2.3
Найдем значение .
Этап 2.3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.3.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.3.1.2
Производная по равна .
Этап 2.3.1.3
Заменим все вхождения на .
Этап 2.3.2
Поскольку является константой относительно , производная по равна .
Этап 2.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.4
Умножим на .
Этап 2.3.5
Перенесем влево от .
Этап 3
Этап 3.1
Продифференцируем.
Этап 3.1.1
По правилу суммы производная по имеет вид .
Этап 3.1.2
Поскольку является константой относительно , производная относительно равна .
Этап 3.2
Найдем значение .
Этап 3.2.1
Поскольку является константой относительно , производная по равна .
Этап 3.2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.2.2.1
Чтобы применить цепное правило, зададим как .
Этап 3.2.2.2
Производная по равна .
Этап 3.2.2.3
Заменим все вхождения на .
Этап 3.2.3
Поскольку является константой относительно , производная по равна .
Этап 3.2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.5
Умножим на .
Этап 3.2.6
Умножим на .
Этап 3.2.7
Умножим на .
Этап 3.3
Вычтем из .
Этап 4
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 5
Добавим к обеим частям уравнения.
Этап 6
Этап 6.1
Разделим каждый член на .
Этап 6.2
Упростим левую часть.
Этап 6.2.1
Сократим общий множитель .
Этап 6.2.1.1
Сократим общий множитель.
Этап 6.2.1.2
Разделим на .
Этап 6.3
Упростим правую часть.
Этап 6.3.1
Сократим общий множитель и .
Этап 6.3.1.1
Вынесем множитель из .
Этап 6.3.1.2
Сократим общие множители.
Этап 6.3.1.2.1
Вынесем множитель из .
Этап 6.3.1.2.2
Сократим общий множитель.
Этап 6.3.1.2.3
Перепишем это выражение.
Этап 7
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 8
Этап 8.1
Точное значение : .
Этап 9
Этап 9.1
Разделим каждый член на .
Этап 9.2
Упростим левую часть.
Этап 9.2.1
Сократим общий множитель .
Этап 9.2.1.1
Сократим общий множитель.
Этап 9.2.1.2
Разделим на .
Этап 9.3
Упростим правую часть.
Этап 9.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 9.3.2
Умножим .
Этап 9.3.2.1
Умножим на .
Этап 9.3.2.2
Умножим на .
Этап 10
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 11
Этап 11.1
Упростим.
Этап 11.1.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 11.1.2
Объединим и .
Этап 11.1.3
Объединим числители над общим знаменателем.
Этап 11.1.4
Умножим на .
Этап 11.1.5
Вычтем из .
Этап 11.2
Разделим каждый член на и упростим.
Этап 11.2.1
Разделим каждый член на .
Этап 11.2.2
Упростим левую часть.
Этап 11.2.2.1
Сократим общий множитель .
Этап 11.2.2.1.1
Сократим общий множитель.
Этап 11.2.2.1.2
Разделим на .
Этап 11.2.3
Упростим правую часть.
Этап 11.2.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 11.2.3.2
Умножим .
Этап 11.2.3.2.1
Умножим на .
Этап 11.2.3.2.2
Умножим на .
Этап 12
Решение уравнения .
Этап 13
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 14
Этап 14.1
Сократим общий множитель .
Этап 14.1.1
Вынесем множитель из .
Этап 14.1.2
Сократим общий множитель.
Этап 14.1.3
Перепишем это выражение.
Этап 14.2
Точное значение : .
Этап 14.3
Сократим общий множитель .
Этап 14.3.1
Вынесем множитель из .
Этап 14.3.2
Сократим общий множитель.
Этап 14.3.3
Перепишем это выражение.
Этап 15
— локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
— локальный максимум
Этап 16
Этап 16.1
Заменим в этом выражении переменную на .
Этап 16.2
Упростим результат.
Этап 16.2.1
Упростим каждый член.
Этап 16.2.1.1
Сократим общий множитель .
Этап 16.2.1.1.1
Вынесем множитель из .
Этап 16.2.1.1.2
Вынесем множитель из .
Этап 16.2.1.1.3
Сократим общий множитель.
Этап 16.2.1.1.4
Перепишем это выражение.
Этап 16.2.1.2
Перепишем в виде .
Этап 16.2.1.3
Сократим общий множитель .
Этап 16.2.1.3.1
Вынесем множитель из .
Этап 16.2.1.3.2
Сократим общий множитель.
Этап 16.2.1.3.3
Перепишем это выражение.
Этап 16.2.1.4
Точное значение : .
Этап 16.2.2
Окончательный ответ: .
Этап 17
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 18
Этап 18.1
Сократим общий множитель .
Этап 18.1.1
Вынесем множитель из .
Этап 18.1.2
Сократим общий множитель.
Этап 18.1.3
Перепишем это выражение.
Этап 18.2
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как синус отрицательный в четвертом квадранте.
Этап 18.3
Точное значение : .
Этап 18.4
Сократим общий множитель .
Этап 18.4.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 18.4.2
Вынесем множитель из .
Этап 18.4.3
Сократим общий множитель.
Этап 18.4.4
Перепишем это выражение.
Этап 18.5
Умножим на .
Этап 19
— локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
— локальный минимум
Этап 20
Этап 20.1
Заменим в этом выражении переменную на .
Этап 20.2
Упростим результат.
Этап 20.2.1
Упростим каждый член.
Этап 20.2.1.1
Сократим общий множитель .
Этап 20.2.1.1.1
Вынесем множитель из .
Этап 20.2.1.1.2
Вынесем множитель из .
Этап 20.2.1.1.3
Сократим общий множитель.
Этап 20.2.1.1.4
Перепишем это выражение.
Этап 20.2.1.2
Перепишем в виде .
Этап 20.2.1.3
Сократим общий множитель .
Этап 20.2.1.3.1
Вынесем множитель из .
Этап 20.2.1.3.2
Сократим общий множитель.
Этап 20.2.1.3.3
Перепишем это выражение.
Этап 20.2.1.4
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как синус отрицательный в четвертом квадранте.
Этап 20.2.1.5
Точное значение : .
Этап 20.2.2
Окончательный ответ: .
Этап 21
Это локальные экстремумы .
— локальный максимум
— локальный минимум
Этап 22